

Grid Planning Assumptions workshop Demand forecasting

Brian Kirtlan and Brian Bull 29 February 2008

Current status

- Demand forecasts were prepared as part of the grid planning assumptions in 2006 and published as a draft in May 2007
- Forecasts reviewed late 2007 which resulted in some minor changes to the forecasting methodology
- Revised forecasts released for consultation with the intention of publishing them in the 2008 Statement of Opportunities

Forecasting process overview

Application of forecast components

Key points

- Long term energy and peak forecasts separate from short-medium term forecasts used for security of supply
- Econometric national energy model based on key drivers – GDP, population, housing
- Split into major sectors residential and commercial / industrial + Tiwai smelter
- National energy forecasts are allocated to regions and grid exits points
- Used to create prudent and expected peak forecasts

Projected national energy demand

Projected national energy demand - % growth

2007 energy forecast compared to 2006

Energy forecast uncertainty

- There is uncertainty in both the historical data series (resulting in modelling uncertainty) and the forecasts of the key drivers (GDP, population etc)
- Use Monte Carlo modelling to estimate the resulting uncertainty in forecast demand
- Establish distributions for the input series and for the forecast drivers
- Run the model many times, drawing randomly from the defined distributions and reestimating the model and forecasts

Energy forecast confidence limits

Regional energy forecasts

- Allocation to regions based on population and GDP projections
- Use recent trends in shorter term then transition to long term driver driven forecasts
- Altered transitional weighting so that short term trend given more emphasis for an increased number of years
- Introduced inter-regional population uncertainty modelling – had little impact

Regional energy forecasts – exponential v.s. logistic transition

Weighting applied to trend based forecast

Regional forecast example – transition from short term trend to long term forecast

Forecast South Canterbury demand

Inter-regional population variation example

Island energy balance

	Av. Ann. Growth Gwh			% of total N	% of total NZ growth	
	South	North	NZ	South	North	
Past 8 yrs	238	358	596	40%	60%	
Past 5 yrs	260	368	628	41%	59%	
Revised Forecas	sts					
Next 5 yrs	229	334	564	41%	59%	
Next 10 yrs	198	419	616	32%	68%	
Next 20 yrs	137	478	615	22%	78%	
Draft 2007 Forec	asts					
Next 5 yrs	169	484	653	26%	74%	
Next 10 yrs	148	514	661	22%	78%	
Next 20 yrs	127	511	638	20%	80%	

Raw GXP peak forecasting

- GXP peaks used as a base to forecast from are estimated using recent trends in metered demand
- Focus is to produce an expected peak with 'normal' diversity and power factor characteristics (uses 50 highest peaks)
- Raw GXP mean forecasts use energy growth rates for each GXP with adjustments for embedded generation

Forecasting process overview

Prudent and expected peak forecasting

- Expected regional peak forecasts are calculated using metered data and the energy forecasts
 - Single highest peak
 - Historical trend merges gradually into projected growth rate from energy forecasts
 - Includes adjustments for committed new load
- Prudent regional peak forecasts incorporate:
 - Uncertainty about energy growth
 - Risk of short-term surge in peak demand
 - Year-to-year variation in peak demand (weather, etc)
- Raw GXP forecasts are then scaled so that they sum to match the prudent peak forecasts then transition to mean forecast growth

Regional forecast types

North Island peak growth

Annual peak demand forecast: NI

Calendar year

South Island peak growth

Annual peak demand forecast: SI

Calendar year

2008 step load adjustments

Project	Date	MW	GWh	GXP	Region
Pike River coal mine Stage 1	2008	7	61	ATU1101	West Coast
Pike River coal mine Stage 2	2009	7	61	ATU1101	West Coast
Blackpoint irrigation Stage 1	2007	6	19	BPT1101	Otago/Southland
Blackpoint irrigation Stage 2	2008	4	18	BPT1101	Otago/Southland
Westland Dairy powder plant	2008	4	18	HKK0661	West Coast
Globe Progress gold mine	2008	4	35	RFT1101	West Coast
Hawera gas processing plant	2008	12	80	HWA0331	Taranaki

ADMD prudent peak forecasts

- Some significant changes to regional peak forecast compared to the draft May 2007 forecasts
- GXP forecasts may be changed for specific analyses if additional information becomes available

Load probability curves

- Demand forecasts now also include regional load probability curve (LPC) forecasts
- Definition of LPC "curve that shows the probability that each given demand level will be exceeded in a randomly chosen trading period"
- Can be used for reliability analysis (e.g. in GIT)
- Forecasting methodology not particularly sophisticated. LPC forecast should:
 - Be consistent with energy forecast
 - Be consistent with peak forecast
 - Reflect the historical variability in load shapes

Motivation for LPC forecasts

It's all very well to have a forecast of annual peak, but how much of the time do we expect to be close to that peak?

LPC examples

Load probability curves (ANNUAL): USI

Electricity Te Report Make

END

Supplementary slides

Forecast GDP

Drivers – GDP %

Forecast GDP - percentage growth

Drivers - population

Forecast population

Drivers – population %

Forecast population - percentage growth

Base GXP peak selection example 1

Base GXP peak selection example 2

Errata – Truncated residential model forecast

