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Summary and recommendations

A review of the current methodology and underpinning models used by the New Zealand
Electricity Commission to forecast national residential and commercial/industrial electric-
ity demand has been undertaken. This includes an independent replication of the existing
residential and commercial/industrial econometric regression models, and suggestions for
improvements to the models. Other models and procedures have also been proposed and
developed, particularly for growth rates of demand. A selective literature review is used to
support the findings, and discussion given on the nature and objectives of a more general
modelling framework suitable for long-term national electricity demand forecasting.

The review makes the following recommendations.

Recommendation 1 With regard to the Commission’s current long-term forecasting
models and strategies, it is recommended that:

(a) more comprehensive, systematic, technical documentation be developed that provides
full details of the forecasting models adopted, their objectives and assumptions, the
data used and any pre-processing undertaken, the validation procedures used, and full
mathematical formulations of the models within an overall statistical framework;

(b) a unified modelling framework based on log transformed data be adopted for the current
residential and commercial/industrial demand models, with a view to simplifying the
former and improving the accuracy of the latter;

(c) more comprehensive validation procedures be developed to assess the accuracy and
reliability of demand and driver forecasts, the quality of sample paths, sensitivity to
driver perturbations, forecast error attribution, and the maintenance of any historical
long-term cointegrating relationships in the forecasts;

(d) a more secure, systematic and consistent framework for generating synthetic realisa-
tions of future demand and driver time series be developed based on the Commission’s
existing general strategy.

Recommendation 2 With regard to other long-term forecasting models and strategies,
it is recommended that the Commission:

(a) develop a suite of competing forecasting models based on growth rates as well as levels,
and use the combination of these forecasts for long-term forecasting and risk assess-
ment;

(b) develop and assess forecasting models which systematically model slowly evolving pa-
rameters and relationships over time, such as those given by equations (9) and (11)
in the review;

(c) explore the development of vector forecasting models with common trends that take
explicit account of cointegrating relationships between the various demand and driver
series.

Further details are given in the report.



1 Scope of review and terms of reference

The New Zealand Electricity Commission (Commission) seeks an independent review of
the current methodology and models it uses to forecast national residential and com-
mercial /industrial electricity demand. This review of the underpinning methodology and
models, rather than the forecasts themselves, was prompted by recent updates to New
Zealand population projections used as drivers in the Commission’s residential electricity
demand model which have resulted in a significant jump in forecast residential demand.

Statistics Research Associates Ltd (SRA) has been commissioned to undertake this review
which should include:

(a) independent replication of the existing residential and commercial /industrial econo-
metric national demand models;

(b) development and assessment of alternative model formulations considered appropriate
by SRA including, but not limited to, models incorporating time evolution;

(c) provision of advice and recommendations with respect to the continued use of the
existing Commission models and possible alternatives.

Information provided for the review included Kirtlan (2008), NZIER (2009) and a number
of earlier documents on demand forecasting available from the Commission’s website (see
hitp:/ /www. electricitycommission.govt.nz/opdev/modelling in particular). Brian Kirtlan
(Commission) also provided access to the most recent forecasts based on data to March
2009, and the extensive MATLAB code used for generating the Commission’s demand
forecasts and forecast distributions.

The review is documented in the following sections together with further comments and
recommendations.

2 Background

The New Zealand Electricity Commission (Commission) is required to publish a Statement
of Opportunities (SOO) which includes, among other things, national electricity demand
forecasts. These and other requirements have led it to develop long-term econometric
point forecasting models for mean national electricity demand (point forecasts), and also
for the distribution of future demand about the mean forecasts (predictive distributions
or density forecasts).

A primary purpose of these long-term electricity demand forecasts is to enable identifica-
tion of potential opportunities for efficient management, including investment in upgrades
and transmission alternatives, and long-range capacity planning for New Zealand’s elec-
tric power system and transmission network. National electricity demand forecasts are
key inputs to such long-term planning exercises. Since the latter will need to account for
a variety of overarching views (scenarios) of New Zealand’s future energy requirements,



the electricity demand forecasting models used need to be amenable to the development
of such scenario forecasts.

Long-term forecasting of this kind is based on the historical records of electricity de-
mand, and any key macroeconomic or demographic explanatory variables that demand
may depend on. The latter include New Zealand’s Gross Domestic Product (GDP) and
population among others. Such predictors or drivers can be used to provide conditional
forecasts of electricity demand and inputs to scenario forecasts. The Commission’s de-
mand forecasts and models have been reviewed and refined several times over recent years,
particularly in a sequence of reviews by the New Zealand Institute of Economic Research
(NZIER) (see NZIER, 2009, for example). The appropriate choice of relevant predictor
variables has been thoroughly considered in these and other reviews and is not explicitly
considered in this review which is focussed on the methodology and models used by the
Commission, and the general modelling framework adopted.

The electricity demand forecasting models also need to take proper account of other
quantitative and judgemental information on the likely path of New Zealand’s long-term
future electricity demands and the economic and demographic drivers on which they are
based. The views of an informed consensus of relevant experts (economists, energy plan-
ners etc.) will inevitably moderate and shape the long-term forecasts and the nature of
the various scenarios considered. As a consequence, the forecasting models adopted need
to be amenable to the incorporation of such judgemental information, and be sufficiently
transparent that any forecast errors that result can be accurately attributed to the source
of the error, either the formal model adopted or any judgemental or other input used as
a driver.

Currently the Commission produces forecasts of annual electricity demand out to 2050
using econometric regression models fitted to around 30 years of annual historical data
(35 years for residential demand and 23 years for commercial/industrial demand). The
forecasting horizon of approximately 40 years is very long by comparison to the length
of the estimation period (for models fitted to trending data of this length, horizons up
to 5 years might more generally be regarded as short to medium-term, and 5-10 years
as medium to long-term). However, although forecast horizons of 5 years and 10 years
are important to the Commission, its national electricity demand forecasts are primarily
used as key inputs to the Generation Expansion Model (GEM) used to schedule the
commissioning and construction of new electricity generation. Currently GEM minimises
discounted capital expenditure and ongoing operating and maintenance costs over a time
horizon of 32 years. Such very long-term or far-term forecasting poses many challenges,
not least validation.

Quantitative and qualitative validation of long-term forecasts and the models they are
based on is a very important, but challenging, exercise. The longer the forecast horizon
the more difficult this becomes due to many factors including, but not limited to, historical
data limitations, the impact of technological innovation, evolving demographics, changing
national and global economies incorporating evolution as well as unforeseen structural
breaks, and a changing physical environment, including climate change. In practice long-
term forecasting methods and models can usually be validated reasonably adequately for
horizons up to 5 or even 10 years, but become increasingly more difficult, if not impossible,



to validate over longer forecast horizons.

In summary, key principles governing the choice of long-term forecasting models and a
suitable modelling framework include the following.

o Well-defined forecast objectives and forecast horizons.

e Quality data over a reasonable time period which should preferably exceed the
forecast horizon.

e Transparent forecasting models, within an overall modelling framework, that
are sufficiently simple and open that they are well-understood by all stakeholders,
encompass sufficiently broad views of the future, and which capture the major long-
term historical joint variation of all relevant variables over time.

e Careful validation of the forecasts produced at key horizons, both quantitatively
and qualitatively.

In practice, forecast models based on such principles are more likely to lead to an informed
consensus of long-term views on future electricity demand and, as a consequence, useful
long-term forecasts and enlightened forward planning.

2.1 Selective literature review

In general, medium and long-term forecasting of energy demand has received consider-
ably less attention in the peer-reviewed academic literature than short-term forecasting.
What literature exists is sometimes of uneven quality from both methodology and val-
idation points of view, with more of a focus on new models and methods rather than
careful comparative evaluation. When it comes to very long-term horizons such as those
considered by the Commission, the literature is even less informative. Nevertheless there
are a number of useful reviews and papers that are relevant to the forecasting and mod-
elling strategy adopted by the Commission. A selective review of these papers and recent
literature follows.

The book Armstrong (1985) provides a general reference to long-term forecasting. In the
context of long-term energy forecasting, a useful starting point is Craig et al. (2002) which
provides an insightful overview of how very long-term energy forecasts (those covering two
or more decades) are created and why they are useful. It focuses on energy demand in
the US, but the general thrust is highly relevant to many other countries including New
Zealand. The paper makes the following pertinent observations, among many others.

e Very long-term energy forecasts (two or more decades) are not able to be validated
in any conventional quantitative sense, so that confidence in the resulting forecasts
rests on the nature of the forecast construction, its fitness for purpose, and the
underpinning models.

e Forecast models and assumptions need to be clearly and comprehensively docu-
mented so that the models are readily understood, evaluated and reproduced by
others.



e Accurate data compilation and careful construction of relevant scenarios are more
important to achieving forecasting objectives than complex models and methodol-
ogy. The importance of model transparency cannot be overemphasised.

e Do not rely on one forecasting model. Combinations of forecasts or forecast av-
eraging is a simple, pragmatic and instructive way of generating more robust and
accurate long-term predictions than any single method. Granger (1989) provides
arguments as to why this is generally the case, and Huss (1985) shows that, in
the context of medium to long-term energy forecasting and a range of forecasting
methods, forecast averaging generally outperformed all the other methods.

A primary finding of Craig et al. (2002) was that the forecasters in the period 1950
1980 underestimated the importance of unforeseen surprises such as the ability of the US
economy to respond to the 1970s oil embargo by increasing efficiency. Not only were the
forecasts of that period systematically high, but their uncertainty was also systematically
underestimated.

Huss (1985) compares the results of medium to long-term electricity demand forecasting
methods applied across a selection of forecasting models applied to data from 49 large US
utilities for forecast horizons of 2, 4, 6 and 11 years. Although somewhat dated and the
data available limited, the conclusions of this study are still relevant since the methods
compared continue to be used in practice. These methods included four univariate time
series methods (no drivers apart from time itself) and linear regression with much the
same drivers as those considered by the Commission. The time series methods consid-
ered were a simple linear time trend estimated using ordinary least squares, exponential
smoothing, adaptive trend estimation, and a forecast combination that averaged the pre-
vious three methods. For the regression method, the drivers were either forecast using
simple exponential smoothing (providing ex ante demand forecasts), or the actual val-
ues of the driver were used (providing ex post demand forecasts with perfectly predicted
drivers, a situation normally impossible to achieve in practice). Among other conclusions,
it was found that the univariate time series forecasting models considered performed bet-
ter than the econometric linear regression model, although the performance of the latter
improved with longer forecast horizons, and forecast combination or forecast averaging
outperformed the other time series methods. Of the methods used by the utilities con-
sidered, Huss (1985) also found that econometric techniques failed to outperform trend
extrapolation/judgemental techniques.

Over the last two decades, other energy forecasting models and methodologies have been
developed and considered, most being a variant of those considered by Huss (1985), but
some are sufficiently different in concept and form to warrant further investigation. The
latter category include vector time series models which attempt to simultaneously model
both dynamic and long-run equilibrium relationships between trending variables. Among
these are vector autoregressions (VAR models) and vector error correction (VECM) mod-
els both of which are commonly used for short to medium-term econometric forecasting.
In particular, VECM models take account of cointegration where, for example, demand
and its drivers are linearly related to a common trending variable (scalar or vector) that
is typically unobserved and must be estimated from the data. Allen and Morzuch (2006)



provide a general perspective of progress and problems with these econometric forecasting
models since the 1980s. Dergiades and Tsoulfidis (2008) give an example of fitting such
a model to US residential electricity demand to explore the interrelationships between
demand and its drivers, although not necessarily in the context of long-term forecasting.

A recent paper by Hyndman and Fan (2009) consider long-term (up to 10 years ahead)
point and density forecasting of South Australian peak electricity demand based on
half-hourly measurements made over the summer months November to March. Semi-
parametric additive models are used to fit relationships between the logarithms of demand
(excluding major industrial demand) and drivers that include temperature, calendar, de-
mographic and economic variables. Forecasts out to 10 years ahead were made using a
combination of temperature simulation, economic scenarios, and residual bootstrapping.
Their model decomposes half-hour variation in the logarithms of demand from annual
variation with the annual base demand levels estimated using linear regression. For the
latter, the best model included South Australian GDP, lagged average price, and cool-
ing degree days. Model selection procedures and diagnostic plots were used to check the
goodness of fit of the model in-sample, and the evaluation of 1 year ahead out-of-sample
forecasts was also undertaken. Although the Hyndman and Fan (2009) model proposes a
number of interesting innovations, especially for seasonal time scales and the construction
of forecast densities, its base annual demand model is not dissimilar from that proposed
by the Commission.

As noted in NZIER (2009), econometric linear regression models similar to those adopted
by the Commission are widely used in practice and continue to be discussed in the aca-
demic literature. See, for example, Chui et al. (2009), who consider forecasting long-term
electricity demand in Ontario, Canada, and Mohammed and Bodger (2005) who consider
forecasting long-term electricity demand in New Zealand. In such studies, electricity de-
mand and any economic drivers such as GDP, are typically transformed by applying the
logarithm transform. The justification for this transformation comes mainly from the time
series properties of electricity demand, but such a transformation is also consistent with
considering a multiplicative Cobb-Douglas production function (see von Hirschhausen and
Andres, 2000, and Dergiades and Tsoulfidis, 2008, for example) which can be fitted using
linear regression methods after taking logarithms.

As has already been mentioned, validation of long-term energy forecasting models is a
challenging, but very important, exercise. A case for thorough retrospective analysis of
past performance of long-term energy forecasting procedures is given in Koomey et al.
(2003). More recently, Lady (2009) considers the accuracy of long-term forecasts from a
complex model, the US National Energy Modeling System (NEMS), using quantitative
methods and an approximate model. The approach advocated is, in essence, a designed
statistical experiment which can elucidate a number of useful properties of the NEMS
model, including the nature of its response (sensitivity) to changes in driver forecasts.
Lady (2008) also considers the important issue of forecast error attribution. What part
of the forecast error in electricity demand is due to driver forecast errors, and what
part is due to the model itself? A New Zealand study of this nature concerning tax
revenue forecasting is given in Keene and Thomson (2007). Other important validation
issues include the impact of constructing models and forecasts using recent data that is



subsequently revised (for example, New Zealand’s GDP and population size). Given that
the most recent data is typically most heavily weighted in any forecasting exercise, data
revisions have the potential to introduce significant distortions in long-term forecasts.
In the context of short to medium-term forecasting, Faust and Wright (2009) consider
the impact of such revisions on forecasting quarterly US macroeconomic data, and for a
variety of forecasting methodologies.

3 Commission’s national demand forecasting models

The long-term forecasting models used by the Commission are described in Kirtlan (2008)
with supporting documentation available from the Commission’s website. The MATLAB
code used to generate the forecasts and the predictive distributions was also made avail-
able. Further written and verbal comments were provided by Brian Kirtlan in response to
queries. This review is based on these information sources which are collectively referred
to as the background documentation.

While the general objectives of the point and density long-term forecasts required by
the Commission appear to be reasonably well covered in the background documentation
(either explicitly or implicitly), they are not all in one document and there is a lack
of sufficient detail to better understand the technical requirements of any forecasting
model adopted. As noted in the previous section, clear, accurate and comprehensive
documentation of the forecasting models and their objectives are key requirements of any
forecasting exercise, particularly long-term forecasting.

Issues that deserve a fuller discussion and resolution include, but are not limited to, the
following.

e Objectives The forecasts appear to be used for many purposes and a variety
of horizons. These separate requirements need to be carefully elucidated from a
forecasting perspective. Is point forecasting (forecasting mean demand) or the fore-
casting of high quantiles all that is required, or are synthetic realisations (sample
paths or trajectories) of annual demand needed. If the latter is true, then the dy-
namics of annual demand may well need to be more accurately modelled; if not then
simpler models can be used.

e Forecast horizon The current horizon of 2050 (42 years) exceeds the requirements
for GEM (32 years) by a decade and is very long by comparison to the estimation
periods used. Given that quantitative validation is normally only possible for hori-
zons of 5-10 years, it would seem prudent to limit the effective horizon to 20 years
(similar to NEMS described in Lady, 2009) with provision for longer horizons if nec-
essary. The relative importance of intermediate lead times up to the forecast horizon
also needs to be considered as this will have a bearing on forecast validation.

e Econometric versus time series models As noted in Section 2.1, the litera-
ture suggests that time series models perform at least as well, if not better, than



econometric models which seek to determine the relationship between electricity de-
mand and nationally important drivers such as GDP, population etc. The latter are
typically useful for applications where economic, demographic and environmental
scenarios need to be specified (high economic growth, high immigration, climate
warming etc.) to better inform long-term planning. If these scenarios are not used
or are less important than accuracy, then time series models may well be preferred.

Currently it would seem that the Commission documents each forecasting round (see
Kirtlan, 2008, for example), but there is not a single, more technical, document that
specifically provides details of the forecasting models adopted, their objectives and as-
sumptions, why they are appropriate, full details of the data used and any pre-processing
undertaken, details of the validation procedures, together with supporting arguments and
appropriate (mathematical) model formulations. Such a document, essentially a purpose-
built forecast manual, has many advantages. In particular, it helps ensure continuity of
forecast quality, captures in-house technical knowledge so that it is no longer the preserve
of any one individual, is essential for training new forecasting staff, and allows other in-
terested parties (external or internal) the opportunity of providing informed comments as
well as the opportunity to reproduce the forecasts or apply the procedures to other data.
These comments are especially true here where it is clear that a significant amount of
innovative work has been invested in a range of specialised forecasting procedures. These
observations form part of the recommendations made in Section 3.4.

3.1 Model fitting and selection

Annual data spanning the period 1946 to 2008 were provided with national residential
demand, commercial/industrial demand, residential electricity prices and domestic resi-
dences sourced from the New Zealand Ministry of Economic Development, and the na-
tional economic and demographic annual measurements (real GDP, population, CPI)
sourced from Statistics New Zealand. For the most part, the annual data series were
for March years (ending on 31 March of the given year) with the exception of popula-
tion which was for June years and the CPI which was for calendar years. Although it
is important to have all data sets on the same time scales, especially if dynamics are to
be modelled, it is unlikely that small time shifts of the order of a quarter will make a
major difference. Nevertheless, this is a potential source of error that can and should be
eliminated.

However, to account for issues such as evolving relationships between demand and its
drivers and any structural breaks in the data, the Commission has only used data from
1974 to 2008 (35 years) to fit the forecasting model for residential demand, and data from
1986 to 2008 (23 years) for fitting commercial/industrial demand. These intervals will
be termed estimation windows in the discussion that follows. Accounting for evolution is
necessary, but inevitably leads to the placing of more weight on the most recent observa-
tions and their interrelationships, effectively reducing the amount of data used for model
fitting. The implication is that more recent relationships, rather than past relationships,
are more likely to persist in the long-run, despite the fact that this may not have always



been so in the past. This serves to throw yet more weight on the nature of the model and
its relationships to any drivers.

For both residential demand and commercial/industrial demand, the Commission fits
linear regression models of the form

Y(t) = By + Z@X;-(t) +e(t) (1)

where t indexes years and the fits are obtained using ordinary least squares (OLS) over
the respective estimation windows. For residential demand p = 3, Y'(¢) is the logarithm
of residential demand per capita, X (¢) is the logarithm of GDP per capita, X5(t) is the
logarithm of domestic residences per capita, and X3(¢) is the logarithm of residential elec-
tricity price in 2008 dollars (adjusted using the CPI). For commercial /industrial demand
p =2, Y(t) is commercial /industrial demand, X;(¢) is GDP, and X5(¢) is a dummy vari-
able indicating a year when an electricity shortage event occurred. The residual error €(t)
should represent non-systematic or random error with mean zero, constant variance and
little, if any, serial correlation.

Note that the residential demand model uses the logarithm to transform demand and its
drivers (called the log transform), whereas the commercial /industrial demand model works
with the original (untransformed) variables. Given the range of the numbers involved, it
will typically make little difference to the in-sample regression results whether the data
are initially log-transformed or not. However, forecasts over the longer-term horizons will
show a difference (typically the forecasts using the log transform will be lower, although
any bias can be corrected for), and the model based on logarithms has useful economic
interpretations that can lead to a better understanding of the model. In particular, the
logarithm converts multiplicative and compound growth relationships that are prevalent
in economics, finance and nature to additive relationships with annual differences that
measure (continuously) compounding growth rates.

Using the log transform for residential demand, but not for commercial /industrial demand,
seems an unnecessary dichotomy that would appear to lead to few, if any, forecasting
gains. Although the graphical evidence is modest (see Figure 1, for example), plots of
the data show that both demand series and their drivers have fluctuations about their
long-term trends that would appear, for the most part, to be roughly proportional to
the level of the series. This observation is an indication that the log transform would
be a suitable transformation for both demand series and their drivers. In addition to
aiding understanding, a common transformation also means that accounting for forecast
errors in aggregate demand is a simpler and more straightforward exercise (see Keene and
Thomson, 2007).

Figure 1 plots the original and log transformed demand series and their drivers where
all series have been scaled by their respective values in 2008. All series show increasing
trends from 1946 with the exception of commercial/industrial demand and the adjusted
residential electricity price which have increasing trends from the mid 1970s. It would
appear that there are significant linear relationships between these variables (original or
transformed), particularly over the estimation periods, which implies that the demand
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Figure 1: Plots of residential demand (black), commercial/industrial demand (red), domestic
residences (green), population (blue), GDP (cyan) and residential electricity price in 2008 dollars
(magenta). The left panel shows the original variables, the right panel shows the log transforms,
and all series have been scaled by their respective values in 2008. The vertical dotted lines mark
the starts of the residential (1974) and commercial/industrial (1986) estimation windows.

series and their drivers are likely to be linearly related to a common trend or trends. In
particular, residential demand appears to be closely related to domestic residences since
the early 1970s, and the logarithm of commercial /industrial demand appears to be closely
related to the logarithm of GDP since 1990. Such considerations no doubt lay behind the
choice of drivers for the demand forecasting models adopted by the Commission.

The results of fitting the 2009 residential and commercial/industrial demand forecasting
models were replicated using R, a comprehensive statistical computing and graphical
environment (see R Development Core Team, 2004), as were the 2006 and 2007 forecasting
models described in Kirtlan (2008). In all cases and as expected, there was close agreement
between the fitted models using R and those determined by the Commission who used
MATLAB. The agreement was assessed by comparing the various numerical forecasts for
2009 provided by Brian Kirtlan and, for 2006 and 2007, by examining the coefficients
listed in Tables 1 and 2 of Kirtlan (2008). The only exceptions were the values of the
squared coefficient of multiple correlation (so-called R* coefficient) which measures the
strength of the fitted linear relationship. The values determined by R were somewhat
less than those quoted by the Commission due, perhaps, to a difference in definitions.
Although not likely to be important, the cause of such differences needs to be identified
and rectified if necessary.

The commercial/industrial demand model involves one driver (GDP), apart from the
shortage dummy, whereas the residential demand forecasting model involves four drivers,
although one (population) has been used to standardise demand, GDP and domestic
residences into their per capita forms. The simplicity of the commercial /industrial model
contrasts with the relative complexity of the residential demand model. As noted in
NZIER (2009), the latter model is approaching the limits of what might be regarded as
simple and transparent. For the 2009 residential demand forecasting model, the regression

10



Table 1: The Commission’s 2009 demand forecasting models for the logarithms of residential
demand and for commercial/industrial demand. OLS regression coefficients (coef.) and their
standard errors (s.e.) are given.

Log residential demand Commercial /industrial demand
Variable coef. s.e. || Variable coef. s.e.
Constant -3.531 0.408 || Constant 1656 773
log(GDP per capita) 0.258 0.073 || GDP 0.143 0.008
log(Residences per capita) 1.040 0.147 || Shortage -247 436
log(Price) -0.133  0.052

coefficients and their conventional OLS standard errors are given in Table 1. If the
standard errors are any guide, then domestic electricity price does not play a significant
role in the residential demand model (not surprising given the nature of its sample path
in Figure 1), and the shortage years in the estimation window (1993, 2002 and 2004) have
an insignificant impact on the commercial/industrial demand model. Omission of these
variables would further simplify the respective models.

Using the basic properties of the logarithm, the Commission’s residential demand model
can be reformulated as

log Y (t) = (o + Bilog G(t) + Balog R(t) + Bz log P(t) + Balog N(t) + €(t) (2)

where Y'(¢) is residential demand, G(t) is GDP, R(t) is domestic residences, P(t) is domes-
tic electricity price, N(t) is national population, €(t) is non-systematic random error, and
(4 is constrained to satisfy 84 = 1—[3; — 2. Here the estimates of 3y, (1, 52 and (3 are the
same as those listed for the Commission’s residential model given in Table 1. Evidently
Bs is very close to, and not significantly different from, one (a result also replicated for
the 2006 and 2007 results). This implies that the Commission’s residential model can be
simplified to

log(Y (t)/R(t)) = fo + P11og(G(t)/N(t)) + Fslog P(t) + €(t) (3)

which involves fewer parameters and is just as easy, if not easier, to interpret. It is likely
that this slightly simpler, more transparent, model will produce forecasts that are very
similar to those of the Commission’s residential demand model. Further support for this
standardisation is provided by Figure 2 which plots the logarithms of residential demand
per capita and residential demand per domestic residence over time. The latter is more
stationary over the estimation period while the former shows greater evidence of trending.

For the Commission’s residential demand model (2), the fitted values are given by
log Y'(t) = Bo + Bilog G(t) + Balog R(t) + Bslog P(t) + (1 — B — (o) log N(t)

where the estimated regression coefficients Bj (7 =0,1,2,3) are given in Table 1. Esti-

mates of the errors e(t) are given by log Y (¢) —log Y (t) where these can be approximated
as .
. Y (t) =Y (t)
logY(t) —logY(t)  ——~+1—

ogY(t) = log Y (t) %0

11
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Figure 2: Plots of the logarithms of residential demand (black), commercial/industrial de-
mand (red), domestic residences (green), population (blue), and GDP (cyan), per capita (left
panel) and per domestic residence (right panel). All series have been scaled by their respec-
tive values in 2008 and the vertical dotted lines mark the starts of the residential (1974) and
commercial /industrial (1986) estimation windows.
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Figure 3: Plots of the logarithms of residential demand (black, top left) and commer-
cial/industrial demand (black, top right), their respective forecasts (red, upper panels) and
percentage forecast errors 100(log Y () — log Y ()) (black, lower panels). Smoothed log demand
series (green, upper panels) and smoothed percentage forecast errors (green, lower panels) have
been superimposed for reference.
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provided the right hand side is small. This follows from the fact that
log(1+2) = (4)

for z small. In practice this approximation works sufficiently well that the log Y'(t) —
log Y(t) can be safely interpreted as proportionate differences (percentage differences if
multiplied by 100) regardless of whether the forecasts of Y (¢) were obtained using log
transformed data or not. Adopting this interpretation, the percentage forecast errors
100(log Y () — log Y (t)) for the Commission’s residential and commercial /industrial de-
mand models are plotted in Figure 3 over their respective estimation periods and with
smoothed trends superimposed. The latter can be estimated using a variety of methods,
but are estimated here using the Hodrick-Prescott filter (Hodrick and Prescott, 1997)
which is widely used in economic applications, particular for the identification of business
cycles, but also more generally. The main requirement of such a filter is that it should
reliably produce nonparametric trends or local levels that run through the middle of the
data.

From Figure 3 it would seem that the Commission’s residential demand model produces
fitted values (in-sample forecasts) for the log transformed series that are to a large extent
unbiased and whose errors appear stationary, although possibly serially correlated. If
serial correlation is present then this will impact on the accuracy of short to medium-
term forecasts, but have little effect on the accuracy of medium to long-term forecasts.
The percentage errors for the residential demand in-sample forecasts vary between -4.5%
and 4.7% with a median absolute percentage error of 1.4%. The Commission’s commer-
cial /industrial demand model is not as good with evidence of forecast bias, particularly
in the first half of the estimation period where the fit is poor, and non-stationary forecast
errors. The percentage errors for the commercial/industrial demand in-sample forecasts
vary between -13.8% and 6.6% with a median absolute percentage error of 3.3%. These
in-sample results typically represent the best outcome that could be achieved when fore-
casting out-of-sample using the actual values of the drivers. Model error and the need to
forecast the drivers will inevitably increase these values quite considerably, particularly
for medium to long-term forecast horizons.

Many variants of these models can, and no doubt have, been tried. In each case, the
in-sample regression diagnostics and forecast errors should be assessed in the usual way
in addition to the checks on out-of-sample forecast performance discussed in Section 3.2.
Information criteria such as Akaike’s Information Criterion (AIC) are useful for selecting
suitable candidate forecasting models that are more parsimonious, involving fewer param-
eters and associated drivers. The standard AIC criterion trades model fit against model
complexity by selecting the model order p that minimises

AIC = -2 log likelihood + p

where, in the case of standard linear regression models, the likelihood is often based on
the assumption that the €(¢) are stationary, Gaussian, zero-mean time series. Hyndman
and Fan (2010) use a modification of the AIC criterion (see Harrell, 2001) to discriminate
between their long-term demand forecasting models.
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3.2 Forecast validation

The quality and accuracy of long-term point forecasts are difficult to assess in any conven-
tional quantitative sense (root mean squared forecast errors for example), although such
exercises can and should be undertaken for shorter horizons up to 5 years or 10 years if
possible. By contrast to short-term forecasting, this means that more emphasis must be
placed on the nature of the forecasting model adopted, its fitness for purpose, and its abil-
ity to address the substantive long-term issues in view. The model should be as open and
transparent as possible, to encourage input from informed stakeholders, and be consistent
with relevant economic or physical considerations. The choice of drivers should encompass
the main variables of interest (economy, weather, demographics etc.), but their number
should be kept to a minimum to enhance interpretability and understanding. The way
the model responds to changes in the drivers (high/low GDP or population trajectories
for example) should suitably reflect current thinking as well as patterns in the historic
data record. A good example is given in Lady (2009).

In the case of density forecasting, the validation task is more difficult. For short to
medium-term horizons and a given econometric model, a moving fixed-length estima-
tion window can be applied successively over the years within a suitable subset of the
span of the historic data. Re-estimating the regression coefficients and using the forecast
drivers available at the time (ex ante forecasts) generates successive out-of-sample de-
mand forecasts that can then be assessed for accuracy using measures such as root mean
squared error (RMSE), mean absolute error (MAE), root mean squared proportionate
error (RMSPE), mean absolute proportionate error (MAPE) and more robust versions
involving the median rather than the mean, for example. Given sufficient historical data
of reasonable quality, predictive densities for each forecast horizon can also be built up in
this way to assess the shape and key quantiles of the predictive distributions concerned.

If realistic synthetic realisations of annual demand need to be randomly generated then
the validation task is even more difficult since the model now needs to account for the
nature and properties of the sample paths of the series concerned. In such cases it may
be important for regression models such as (1) to incorporate dynamic structure so that
the €(t) are serial correlated and yield simulated realisations that are realistically smooth.
The same considerations also apply to the generation of synthetic realisations of drivers
such as GDP. Then key properties of the historical data (static and dynamic) can be
used to benchmark the same properties in the synthetic or simulated demand time series.
Alternatively, bootstrap models can be used where the input data (demand and its drivers)
have first been transformed to approximate stationarity, perhaps by taking time differences
of the logarithms to give annual growth rates. However care must be taken with bootstrap
methods to preserve the key features of the historical realisations.

In any validation exercise involving drivers, it is important to attribute the source of
forecast errors as accurately as possible. Knowledge of where the primary sources of
demand forecast error reside is the key to model and forecast improvement. For example,
if the forecasts for a particular driver produce the greatest component of the overall
demand forecast error, then better forecasts for that driver will need to be developed, if
possible. On the other hand, if the primary source of forecast error resides in the model
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Table 2: Percentage forecast errors for the 2007 and 2008 values of GDP, population and
domestic residences based on forecasts made in 2007 using data up to and including 2006.

Year
Variable 2007 2008
GDP 2.51 4.22
Population 1.40  1.58
Domestic residences | 0.35 -0.39

itself, then alternative models may well need to be developed. An example of such an
analysis is given in Keene and Thomson (2007) who develop an appropriate forecast error
decomposition in the context of New Zealand tax revenue forecasting.

The impact of regular data revisions (particularly for GDP and population) also needs to
be quantitatively assessed within the context of a suitable forecast error decomposition.
The recent more substantive revisions to New Zealand population were, in part, a reason
for this review. The fact that these revisions were important is borne out by Table 2
which shows the percentage forecast errors between forecasts for the years 2007 and 2008
(one year and two years ahead respectively) made in 2007 and their outturns. For those
two years, GDP had an average percentage forecast error of 3.4%, over twice that for
the population (1.5%), and the average domestic residences percentage forecast error is
approximately zero. From (2) or (3), increases in population N(t) reduce forecast log
residential demand (34 < 0), whereas increases in GDP G(t) increase both log residential
demand (8; > 0) and commercial/industrial demand. It would appear that the greater
contribution to the overall percentage forecast error for total demand in 2006 and 2007 is
coming from the GDP forecasts, rather than the population projections.

The Commission’s residential and commercial/industrial demand forecasting models pro-
duce forecasts that are conditional on the associated future values of the drivers (GDP,
domestic residences, population and residential electricity price). To make such condi-
tional forecasts operational, forecasts of the drivers are needed. Rather than developing
their own models for the drivers, the Commission use long-term forecasts provided by
outside agencies such as Statistics New Zealand (population) and NZIER (GDP). It is
not clear what checks the Commission applies to these externally provided forecasts, or
how closely it monitors the models used. In the case of two or more drivers, any long-
term forecasts will need to exhibit much the same long-run interrelationships (essentially
cointegrating relationships) as those observed in the historical data. However, unless
specifically built into the forecasts for the drivers (usually through a joint forecast model
of the drivers concerned), there is no guarantee that any long-term historical cointegrating
relationship will necessarily hold over medium to long-term forecast horizons.

Figure 4 plots the logarithms of the historical demand and driver data augmented by the
Commission’s forecasts. Each series has been scaled by its 2008 value to aid comparison.
The forward evolution of log population, log domestic residences and log GDP from 2008
is not too different from the backward evolution from 2008 seen in the historic data,
although there seems to be slightly less spread in the forecasts than the historic data
over similar time spans. The evolution of log residential electricity price is anomalous
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Figure 4: Plots of the logarithms of residential demand (black), commercial /industrial demand
(red), domestic residences (green), population (blue), GDP (cyan) and residential electricity
price in 2008 dollars (magenta) augmented by the Commission’s forecasts. All series have been
scaled by their respective values in 2008 and the vertical dotted line marks the end of the
historical data (2008).

leading to further doubts as to its reliability both as a predictor or as a variable within
any cointegrating relationship. Although Figure 4 is suggestive rather definitive, it does
nevertheless throw some light on the nature of the interrelationships between the variables
and, in particular, on how well these have been maintained in the long-term forecasts.

Plots of the percentage growth rates of the demand series and their drivers provide further
information on the nature and quality of the forecasts. Using the approximation (4),
growth rates for any time series X (t) are conveniently given by

X(t) - X(t—1)

log X (t) —log X(t — 1) = X(t—1)

provided the right hand side of the above (a simple growth rate) is small (note that
log X (t) — log X(t — 1) is a continuously compounding growth rate). Figure 5 plots the
percentage growth rates of the two demand series and their drivers with the historical
series augmented by the Commission’s forecasts. Trends (smoothed percentage growth
rates) of the historical series are also plotted where these are calculated, as before, using
the Hodrick-Prescott filter. All growth rates show evidence of slowly evolving nonstation-
ary levels that are, for the most part, reasonably consistent with the forecast growth rates.
The residential price growth rates are a notable exception since their forecast growth rates
appear inconsistent with the trend of their recent historical growth rates. Most of the
forecast growth rates are essentially simple linear or constant time series over medium to
long-term horizons, as might be expected. This motivates the need to consider alternative
models based on growth rates (see Section 4) alongside the current models based on levels.
Note, however, that the GDP forecast growth rates over the short to medium-term (ap-
proximately 10 years) show relatively high variability which is, to a lesser extent, reflected
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Figure 5: Plots of the percentage growth rates of residential demand, commercial/industrial
demand, domestic residences, population, GDP and residential electricity price in 2008 dollars
where the historical series have been augmented by the Commission’s forecasts. Smoothed
percentage growth rates of the historical series (green) have been superimposed for reference
and the vertical dotted line marks the end of the historical data (2008).

in both demand forecast growth rates. The variability of the historical growth rates about
their trends is least for the demographic variables (domestic residences and population),
and greatest for price. The growth rate variability of GDP and the two demand series are
comparable, particularly since the 1980s.

These and other validation exercises need to be undertaken to provide confidence in, and
quantitative assessments of, long-term demand forecast accuracy, reliability, and fitness
for purpose. Continuous model improvement is an important goal. Although the Com-
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mission undertakes a number of validation checks, it would appear that more can, and
arguably should, be done. More systematic validation, even at the shorter horizons, builds
confidence in the long-term performance of the forecasting models adopted, and lays a
secure foundation for model development. In this regard, the use of forecast drivers from
other agencies, prepared in isolation of the Commission’s forecasting models and context,
is seen as a potential weakness unless supported by suitable quality checks and validation
studies.

3.3 Predictive distributions

The Commission currently uses a Monte Carlo procedure to generate independent re-
alisations of future electricity demand based on their current residential and commer-
cial /industrial forecasting models. These realisations are used to generate suitable quan-
tiles, among other distributional measures, of the predictive distribution or forecast den-
sity at any given horizon out to 2050. An explanation of the procedure used is given in
Section 3.7 of Kirtlan (2008). However this explanation proved insufficient to adequately
grasp what is being done in any detail and so the MATLAB code that generated these
synthetic realisations had to be carefully examined.

As noted earlier, density forecasting is a substantially more difficult exercise than point
forecasting, and the generation of realistic sample paths for future demand is even more
difficult, especially if the nature of the sample path dynamics is important. In this sense
the Commission’s approach is commendable, ambitious and, in many respects, innovative.
However, although the Commission’s Monte Carlo approach can no doubt be put on a
more secure and systematic footing, the current lack of adequate documentation, and
reliance on ad-hoc assumptions and procedures are major weaknesses which potentially
undermine confidence in the uncertainty measures that result.

Furthermore, the variation explored is all within the framework of the Commission’s
existing models for residential and commercial/industrial demand (model specific forecast
error or uncertainty), and fails to incorporate any error associated with the choice of
models used (model error). The latter can be assessed by considering a range of different
models and combining their forward realisations in one overall ensemble to produce a
greater range and distribution of forecast error than can be achieved with a single model.

The MATLAB routines that underpin the generation of future demand and driver sample
paths are based on multiplicative recursive models that are not always consistently applied
or efficiently coded. As might be expected in code of this complexity and length, one can
find many deficiencies, most of which are small and relatively unimportant. Some of the
more important issues are discussed in the following subsections.

3.3.1 In-sample variation

To determine variation in the fitted regression coefficients of the two demand models due
to the use of stochastic (rather than deterministic) drivers, each driver was, in effect,
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modelled as
D(t) = Tp(t)(1 + epn(t)) (5)

where D(t) denotes the driver, Tp(t) denotes a smooth trend, and the multiplicative error
ep(t) = (D(t) — Tp(t))/Tp(t) measures the trend deviation as a proportion of the trend.
The Commission use a simple 5 year moving average to estimate Tp(t). This moving
average is not as smooth and loses information at the ends of series by comparison to
the Hodrick-Prescott filter used in Figures 3 and 5 for example. Alternative realisations
of the various drivers are obtained by retaining the estimates of Tp(t), and randomly
generating independent values of ep(t) from their empirical distributions. Based on these
realisations, regression estimates are then generated and used in the respective demand
forecasts.

However, any correlation between the ep(t) across different drivers (say population and
GDP) is not accounted for. More importantly, this procedure introduces errors in the in-
dependent variables which will typically result in biased regression coefficients (see Davies
and Hutton, 1975, for example). Nevertheless, even if properly accounted for, this source
of variation will be small by comparison to that of the forecasts themselves.

3.3.2 Sample path generation

To generate a future realisation of population, a population size for 2050 is generated
from a suitable lognormal distribution calibrated against various Statistics New Zealand
projections for 2050. Then a realisation of future population values over the intervening
years is generated by adding a linear term to the original point forecasts. The linear
term, in essence, interpolates the difference between the two 2050 population values and
zero difference at the origin of the forecast interval. This is a linear model in forecast
population levels with only one source of variation. Although simple, it doesn’t reflect
the cohort models used by Statistics New Zealand which are largely multiplicative in
character.

To generate future realisations of GDP per capita, a multiplicative model is used of the
form

D(t) D) )
BT = B P+ en)

where D(t) denotes the future values of GDP per capita, ﬁ(t) is the original forecast
of GDP per capita, n is a single zero-mean, Gaussian variable with known standard
deviation (0.002) representing a proportionate productivity change, and the ep(t) are the
GDP trend deviations determined from the in-sample variation described in Section 3.3.1.
Using logarithms and the approximation (4) yields the practically equivalent growth rate
model

log D(t) —log D(t — 1) = log D(t) — log D(t — 1) + e(t) (6)

where e(t) = n + ep(t)). This will give valid realisations of future values of GDP per
capita if the underpinning model for D(t) follows the simple growth rate model

log D(t) —log D(t — 1) = pu(t) + €(¢) (7)
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where pu(t) is a slowly evolving trend, the stochastic properties of the error term €(t) are
determined from the historical growth rate trend deviations, and forecasts of u(t) are
given by log D(t) — log D(t — 1). This is a simple, transparent, and reasonable model for
GDP per capita judging from the plots in Figure 5. However, the Commission’s model
uses in-sample trend deviations from the multiplicative levels model for GDP given by
(5) and a productivity component, neither of which are related to the errors €(t) in the
GDP per capita growth rate model (7).

Future realisations of domestic residences per capita are generated in much the same way
as GDP per capita, but with e(t) in (6) equal to a zero-mean, Gaussian variable with
known standard deviation (0.005) multiplied by a linear factor that varies from 0, at the
beginning of the forecast interval, to 1 at the end. There is only one source of variation
and, as before, the properties of e(t) are not based on the historical growth rates of
domestic residences per capita.

For residential electricity prices, future realisations are generated using a multiplicative
model of the form (5). After taking logarithms, realisations are determined from

log D(t) = log D(t) + e(t)

where now the D(t) denote future residential electricity prices, the D(t) are the original
forecasts, and e(t) has the same structure as the e(t) for domestic residences per capita.
This time the single source of variation is a zero-mean, Gaussian variable with standard
deviation 0.1.

The Commission’s general strategy for generating synthetic forward realisations of the
various drivers seems appropriate, and the procedures devised are innovative, if not always
consistent within or across drivers. The mismatch of models, ad-hoc assumptions and
procedures can, and should, be rectified and replaced by a more secure and systematic
treatment that is likely to result in simpler computations. If simple models such as (7)
are utilised, then it is also likely that the forecast densities can be determined analytically
without recourse to simulation.

3.4 Recommendation

The analysis and discussion in the previous sections lead to the following recommendation.

Recommendation 1 With regard to the Commission’s current long-term forecasting
models and strategies, it is recommended that:

(a) more comprehensive, systematic, technical documentation be developed that provides
full details of the forecasting models adopted, their objectives and assumptions, the
data used and any pre-processing undertaken, the validation procedures used, and full
mathematical formulations of the models within an overall statistical framework;

(b) a unified modelling framework based on log transformed data be adopted for the current
residential and commercial/industrial demand models, with a view to simplifying the
former and improving the accuracy of the latter;
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(c) more comprehensive validation procedures be developed to assess the accuracy and
reliability of demand and driver forecasts, the quality of sample paths, sensitivity to
driver perturbations, forecast error attribution, and the maintenance of any historical
long-term cointegrating relationships in the forecasts;

(d) a more secure, systematic and consistent framework for generating synthetic realisa-
tions of future demand and driver time series be developed based on the Commission’s
existing general strategy.

4 Other demand forecasting models

The Commission’s current econometric regression models have the virtue that they involve
economic and demographic drivers that can be used to set scenarios and moderate long-
term forecasts of demand. Such models are more difficult to understand, less transparent,
and therefore less useful, when they involve many drivers. The Commission’s residential
demand model involves three regressors (although this can be reduced to two if model
(3) is adopted), whereas its commercial/industrial demand model involves one regressor
(ignoring the shortage dummy which is, in essence, a data adjustment). In the case of the
latter, the plots in Figure 3 suggest that the relationship between commercial /industrial
demand and GDP is evolving over time and a shorter estimation window (perhaps from
the early 1990s) would yield a better fit and more stationary residuals. This suggests that
there may be merit in considering even simpler models of residential demand involving
only one driver, or even no drivers (time series models), and more adaptive models for
commercial /industrial demand that can better cope with the evolving relationship be-
tween commercial /industrial demand and GDP, especially over its most recent history.
Given the nature of the trends evident in the log demand levels (Figure 3) and the de-
mand and driver growth rates (Figure 5), evolution clearly plays a more general role in the
demand and driver series which must be accommodated, either in the form of carefully
selected estimation windows, or otherwise.

The suggestions made above will, if taken up, lead to a number of competing models,
some based on levels and others on growth rates, with some involving drivers and others
not. This will lead to a variety of point forecasts and the need for forecast averaging.
As noted in Section 2.1, this is a strength, rather than a weakness, since it addresses
model error, and is in accord with both the literature and best practice. Furthermore,
generating sample paths of future electricity demand from each model and combining
these within an overall ensemble is likely to yield a more accurate, reliable view of future
demand than any single model and, as a result, more robust estimates of forward risk.
These considerations underpin the development that follows.

Many of the models used implicitly or explicitly by the Commission can be put in a
common framework of the form

Y (t) = w() X1 ()" O X5 ()20 X, (1) De(t)

where Y'(t) denotes either residential or commercial/industrial electricity demand, the
X;(t) (j =1,...,p) denote suitable drivers, and e(t) denotes multiplicative random error
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that varies about a mean of unity. Here the coefficients x(¢) and §;(t) (j = 1,...,p)
are assumed to be evolving slowly and smoothly over time. Taking logarithms of this
multiplicative model gives the additive log levels model

log Y (t) = Bo(t) + B1(t) log X1(t) + ... 4 B,(t) log X, (t) + €(t) (8)

where [3y(t) = log ko(t) and the €(t) are now random errors with mean zero. The evolution
in the parameters ;(t) can be handled through a judicious choice of estimation windows
(the Commission’s current approach), or modelled more directly. Here an approach to the
latter is considered which, although not entirely devoid of problems, has a more systematic
and automatic way of accounting for evolutionary parameter variation.

Consider the simple case of (8) where p = 1, X;(t) = X(t), fo(t) = a(t) and £1(t) = 6.
Then the log levels model (8) becomes

logY(t) = a(t) + Blog X (t) + €(t) (9)

where the evolutionary component «(t) is assumed to be a slowly varying trend, the
constant (3 describes the long-run linear relationship with log X (¢), and any deviations
from that long-run relationship are absorbed into the random error €(¢). An important
special case of (9) is where 3 = 1 so that

log(Y'()/ X (1)) = a(t) + () (10)

which is an even simpler evolutionary model for the logarithms of the ratios Y (t)/X (1).
Taking time differences of (9) yields the growth rate model

logY(t) —logY(t — 1) = pu(t) + B(log X (t) —log X (t — 1)) + n(¢) (11)

where p(t) = a(t) — a(t — 1), and the n(t) are random errors with zero mean. This is
essentially a regression model of demand growth rates against driver growth rates with a
slowly evolving intercept u(t) whose nature will depend on that of «(t). If the latter is
a locally linear trend over time, then p(t) should be a trend that is locally constant over
time. Note that the coefficient 3 can be interpreted as an elasticity. When 8 = 0 the
model becomes a simple time series trend plus error model, and when § =1

log(Y'()/ X (t)) —log(Y'(t — 1)/ X (¢ — 1)) = p(t) + n(t) (12)

gives a simple growth rate model for the ratios Y'(¢)/X (). These simple evolutionary
models are readily interpreted and relatively easy to apply in practice.

There are many ways to model the trends a(t) and p(t), but here the focus is on stochastic
models suitable for evolutionary trends and for forecasting. Consider a conventional trend
plus error model for time series observations O(t) of the form

O(t) =T(t) +e(t) (13)

where T'(t) is an unobserved stochastic trend and the e(t) are additive random errors.
Following Harvey (1989) or Durbin and Koopman (2001), the stochastic trend 7T'(¢) follows
a local linear trend model if

T(t)=T({t—1)+0(t—1)+v(t),  6(t)=0d(t—1)+E) (14)
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where v(t), £(t) are mutually independent Gaussian white noise processes each with zero
means and standard deviations o,, o¢ respectively. To ensure that the trend T'(t) evolves
smoothly over time, both o, and o, will need to be small by comparison to o, the standard
deviation of the error e(t). Trend forecasts based on the observations O(t) and the local
linear trend model (14) are given by the Kalman filter, and are linear functions of time
unless the () are zero for all ¢, in which case the forecast is a constant value. More
generally, the model specified by (13) and (14) is a special case of a structural time series
model which decomposes an observed time series into a sum of unobserved stochastic
components such as a trend, seasonal, business cycle and residual error. See Durbin and
Koopman (2001) for further details.

Despite being governed by only two parameters o, and o¢, the trend model (14) provides
a relatively flexible range of options. For example, setting o, = o = 0 (equivalently
v(t) = £(t) = 0) in (14) yields a simple regression model with a non-evolutionary, straight-
line, time trend, whereas setting o, = 0 (equivalently v(t) = 0) yields the so-called smooth
trend model which tends to give smoother, more flexible, trends than other variants of
(14). In particular, the smooth trend model with o./0s = 40 gives in-sample estimates of
T'(t) that are the same as those given by the Hodrick-Prescott filter. The local level trend
model is a special case of (14) with 6(¢) = 0 for all ¢. Its forecasts are a constant value
that is, in essence, estimated as an exponentially weighted mean of the observations O(t)
with greatest weight placed on the most recent observations. As a consequence it provides
a sensible estimate (an exponentially smoothed value) of the last local level of the time
series O(t). Weights can be selected using optimal statistical methods such as maximum
likelihood, or pre-specified. Given that any adaptive linear time trend may well prove to
be too unstable in practice for long-term forecasting, it is the local level trend model that
is likely to prove more useful, particularly for data (possibly transformed or scaled) that
appear to follow a locally evolving level.

While the log levels model (10) could be used to model residential demand per domestic
residence since the early 1970s and, less convincingly, commercial /industrial demand as
a ratio of GDP from the early 1990s, it is the growth rates of demand and driver series
where these models are likely to apply to greater effect. From Figure 5 it would appear
that the growth rates generally vary about a smooth local level, particularly from the
mid 1970s, and the trend deviations appear reasonably homogeneous in terms of their
statistical properties. This leads to consideration of growth rate models such as (11) and
(12) with p(t) modelled as a local level trend. Figure 6 shows the forecasts obtained
by fitting the time series model (11) with § = 0 to the growth rates of residential and
commercial /industrial demand, and fitting the model (12) to the growth rates of resi-
dential demand per domestic residence and commercial/industrial demand as a ratio of
GDP. For residential demand, both growth rate models produce forecasts that are less
than those from the Commission’s econometric regression model in log levels. For com-
mercial /industrial demand the converse is true, with both growth rate models producing
forecasts that are greater than those from the Commission’s model, especially the time
series model based only on the growth rates of demand. Although the latter forecast
is considerably higher than the others (a difference accentuated by the 42 year forecast
horizon), it is nevertheless based on a reasonable assessment of the most recent local level
of the historical growth rates that is only 1.5% higher than the long-run rate given by the
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Figure 6: Plots of levels (black, upper panels) and percentage growth rates (black, lower panels)
of residential and commercial/industrial demand with smoothed series (green) superimposed.
Forecasts based on a local level trend model fitted to the growth rates of demand (cyan) and
demand ratios (magenta) are plotted together with the Commission’s forecasts (blue). The
demand ratios are residential demand per domestic residence and commercial/industrial demand
as a ratio of GDP. The vertical dotted line marks the end of the historical data (2008).

Commission’s model. If growth in commercial/industrial electricity demand were main-
tained at current levels then this forecast represents what is likely to occur. Although
these forecasts are illustrative only and have not been validated in any way, they do indi-
cate the forecast variation that may need to be accounted for, but which is absent from
the Commission’s current forecasting procedures.

Models (9) and (11) with [ estimated from the data can also be considered, as can
the more general variants of the local linear trend model (14). Suitable computational
procedures for fitting and forecasting such models are now readily available in a number
of statistical computing systems including R (R Development Core Team, 2004).

So far discussion has focussed primarily on forecasting univariate time series, typically
conditional on suitable drivers that also need to be forecast. Currently the Commission
obtains driver forecasts from external providers whose forecast objectives may not nec-
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essarily align with those of the Commission, and whose methods may also be univariate
in character. However the demand and driver time series are highly interrelated showing
cointegration relationships that need to be maintained over the long-term. Even if driver
series are not involved, it is likely that forecasting models that capture any interrelation-
ship between residential demand and commercial /industrial demand would improve the
forecast accuracy of both, particularly the latter. If such covariation issues are important
then suitable vector models would need to be considered including, but not limited to,
vector forms of the structural time series models (9) and (11) with common trends, and
the VECM models mentioned in Section 2.1 applied to growth rates. The development
of suitable vector models for forecasting New Zealand electricity demand should lead to
forecasting gains and a better, more robust, understanding of any long-term cointegrating
relationships. As part of such an exercise, the Commission would need to develop its own
forecasting models of the associated drivers.

4.1 Recommendation

The analysis and discussion in the previous section lead to the following recommendation.

Recommendation 2 With regard to other long-term forecasting models and strategies,
it is recommended that the Commission:

(a) develop a suite of competing forecasting models based on growth rates as well as levels,
and use the combination of these forecasts for long-term forecasting and risk assess-
ment;

(b) develop and assess forecasting models which systematically model slowly evolving pa-
rameters and relationships over time, such as those given by equations (9) and (11)
in the review;

(c) explore the development of vector forecasting models with common trends that take
explicit account of cointegrating relationships between the various demand and driver
series.
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