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Abstract

Dynamic Outer Approximation Sampling Algorithm (DOASA) is a
version of SDDP for hydro-thermal scheduling. This document gives an
overview of the application of this algorithm to a hydro-thermal schedul-
ing model of the New Zealand electricity system, as implemented as part
of the EMI system maintained by the Electricity Authority.

1 Introduction

Dynamic Outer Approximation Sampling Algorithm (DOASA) is an optimization
methodology for hydro-thermal scheduling and water valuation. This document
describes the DOASA algorithm and its implementation in the code EMI-DOASA
distributed by the Electricity Authority of New Zealand. The DOASA code devel-
oped by Stochastic Optimization Ltd1 is based on the Stochastic Dual Dynamic
Programming (SDDP) algorithm of Pereira and Pinto [6]. The aim of DOASA
(like SDDP) is to construct a policy of releasing water from reservoirs and gen-
erating from thermal plant to minimize the expected cost of meeting electricity
demand over a fixed time horizon. The implementation of this algorithm, as
distributed by the Electricity Authority, divides a year up into 52 weekly stages
and is restricted to the New Zealand electricity system. At the end of each
week we may observe the state of the system which is represented by a set of
reservoir levels in seven lakes (Taupo, Benmore, Pukaki, Tekapo, Ohau, Hawea,
Manapouri) measured in cubic metres above some minimum level datum. The

1DOASA is the result of several years of research in the Electric Power Optimization Centre
at the University of Auckland with contributions by Andy Philpott, Vitor de Matos, Geoff
Pritchard, and Ziming Guan. The SOL implementation was developed by Andy Philpott,
Vitor de Matos, and Geoff Pritchard.
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operating policy for the system is defined implicitly by a cost-to-go function or
Bellman function. This function represents the expected future cost of operating
an optimal policy from the end of the current week till the end of the planning
horizon if the system is in a given state, i.e. there is a certain amount of water
stored in each reservoir. The optimal decision of what water to release and what
thermal generation to dispatch is then determined by solving a single-stage opti-
mization with known inflows that minimizes the sum of thermal generation and
shortage cost in that week plus the expected cost to go from the levels of water
in each reservoir that result at the end of the week.
The DOASA algorithm performs many of the same steps as the SDDP algo-

rithm as described in [6]. To avoid confusion, we should note that SDDP is the
trade name of the software distributed by the Brazilian company Power Systems
Research (http://www.psr-inc.com.br). It is also used by other software providers
to refer to the algorithmic technique used by their software. The name DOASA
was chosen by researchers at the Electric Power Optimization Centre to avoid
this confusion.
The first versions of DOASA were described by Philpott and Guan in [7]. At

this time (2007) the main differences between DOASA and other versions of SDDP
were in the sampling procedures. As opposed to SDDP that created fixed sample
paths of 200 inflow realizations to be used throughout the algorithm, DOASA
resampled the inflow sequences randomly at every iteration. This resampling is
necessary to ensure the almost sure convergence of the method. DOASA also
samples the inflow sequences once in each iteration rather than working with a
batch of 200. This proved to give better policies when the number of iterations is
small2. The implementation of DOASA described here has both of these features.
The random variables in DOASA are the inflows to the hydro systems3. These

are sampled from the historical record, and are assumed to be stagewise indepen-
dent. Since the samples are taken from all locations in a given week in a randomly
chosen year, they preserve the spatial dependence between inflows in the sample.
Some implementations of SDDP also model stagewise dependence (i.e. from week
to week) in inflows using periodic autoregressive moving average (PARMA) mod-
els. These models relate variations in the current week’s inflows to those observed
in previous weeks. This approach multiplies the number of coeffi cients needed in
the cutting planes by the number of lags in the PARMA model. Although this
will improve the accuracy of the cutting plane approximation at the places where

2Some recent work in a forthcoming paper by de Matos and Philpott shows that for a large
number of iterations, there are benefits of using more than one inflow sequence in each iteration.

3It is often assumed that all randomness in this method must be confined to the inflows.
Although this assumption is made for the SOL implementation described here, it is not a serious
restriction for the method and other random parameters (with finitely many realizations) can
be included, albeit with increases in computation time.
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it is computed, the increase in dimension of the problem can entail a significant
increaase in the number of cutting planes required to yield a good policy. For
this reason we have chosen in the SOL implementation to keep the number of
reservoirs with cutting plane coeffi cients to a minimum (7) and assumed stage-
wise independence for inflows. Even a simple system like this takes hundreds of
iterations to converge to a policy that is close to optimal (for the model we have
created). The policy can easily be tested by simulation on inflow sequences with
very complicated stagewise dependence, and in many cases it performs well.
The document is laid out as follows. In the next section we describe the

medium-term hydro-scheduling problem in mathematical terms. This is the opti-
mization problem that DOASA is designed to solve. Section 3 describes the input
files for DOASA and what they contain, and section 4 describes the outputs de-
livered by the program. The final section gives a mathematical description of the
steps of the algorithm used by DOASA for solving this problem.

2 The medium-term hydro-scheduling model

The DOASAmodel seeks a policy of electricity generation that meets demand and
minimizes the expected fuel cost of thermal generation. All data are deterministic
except for weekly inflows that are assumed to be stagewise independent. This
results in a large-scale stochastic dynamic programming model which is defined
as follows. Let xj (t) denote the storage in reservoir j at the end of week t, and
let Ct(x, ω(t)) be the minimum expected fuel cost to meet electricity demand in
weeks t, t+1, . . . , T , when reservoir storage xj(t−1) at the start of week t is equal
to x̄j and week t’s inflow is known to be ωj(t). Here Ct(x, ω(t)) is the optimal
solution value of the mathematical program:

Pt(x̄, ω): min
∑

i∈N
∑

m∈F(i) φm
∑

b T (b, t)fm(b, t) + E[Ct+1(x(t), ω(t+ 1))]

s.t. gi(y(b, t)) +
∑

m∈F(i) fm(b, t) +
∑

m∈H(i) γmhm(b, t) = Di(b, t), i ∈ N ,

x(t) = x̄− S
∑

b T (b, t)(Ah(b, t) + As(b, t)− ω(t)),

0 ≤ fm(t) ≤ am, m ∈ F(i), i ∈ N ,

0 ≤ hm(t) ≤ bm, 0 ≤ sm(t) ≤ cm, m ∈ H(i),

0 ≤ xj(t) ≤ rj, j ∈ J , i ∈ N , y ∈ Y .
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This description uses the following indices:

Index Refers to
t index of week
i node in transmission network
b index of load block
m index of plant
j index of reservoir
N set of nodes in transmission network
F(i) set of thermal plants at node i
H(i) set of hydro plants at node i
J set of reservoirs

and the notation:

Symbol Meaning Units
φm short-run marginal cost of thermal plant m $/MWh
fm(b, t) generation of thermal plant m in load block b in week t MW
xj(t) storage in reservoir j at end of week t m3

x̄j known storage in reservoir j at start of week t m3

h(b, t) vector of hydro releases in block b, week t m3/s
s(b, t) vector of hydro spills in block b, week t m3/s
ω(t) inflow (assumed constant over the week) m3/s
γm conversion factor for water flow into energy MWs/m3

Di(b, t) electricity demand in node i in block b, week t MW
T (b, t) number of hours in load block b in week t h
S number of seconds per hour (3600)
y(b, t) flow in transmission lines in load block b in week t MW
gi(y) sum of flow into node i when transmission flows are y MW
am thermal plant capacity MW
bm hydro plant capacity m3/s
cm spillway capacity m3/s
rj reservoir capacity m3

Y feasible set of transmission flows
A node-arc incidence matrix

Here the water balance constraints in the storage reservoirs at the end of week
t are represented by

x(t) = x̄− S
∑
b

T (b, t)(Ah(b, t) + As(b, t)− ω(t))
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where xj(t) is the storage in reservoir j at the end of week t, sj(b, t) denotes the
rate of spill (in m3/second) in load block b in week t, and ωj(t) is the uncontrolled
rate of inflow into reservoir j in week t. We multiply all of these by S to convert to
m3/hour, and then by T (b, t) to give m3 in each load block. All these are subject
to capacity constraints. (In some cases we also have minimum flow constraints
that are imposed by environmental resource consents.) The parameter γm, which
varies by generating station m, converts flows of water hm(t) into electric power.
The node-arc incidence matrix A represents the river-valley network, and ag-

gregates controlled flows that leave a reservoir by spilling or generating electricity
and subtracts those that enter a reservoir from upstream. In other words row j
of Ah(b, t) +As(b, t)) gives the total controlled flow out of the reservoir (or river
junction) represented by row j, this being the release and spill of reservoir j minus
the sum of any immediately upstream releases and spill.

3 Specific features of the DOASA code

In this section we look at some specific modelling assumptions that are made in
our model.

3.1 Time

The DOASA model uses weekly stages. A calendar year is divided into 52 weeks.
A plan year is typically a year of 52 weeks with the starting week chosen to be
a particular week in the plan year and a fixed number of weeks used. Historical
inflows are sampled from a file that records weekly inflows as described below.
The New Zealand electricity system is represented as shown in Figure 1 below.

Figure 1: The 3 node transmission network and major generators in DOASA.
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3.2 Load blocks

Weekly demand is represented by a load duration curve with three blocks. These
are called peak, off-peak and shoulder. The load duration curve can be con-
structed by reordering national halfhourly demand from highest to lowest, and
then arbitrarily determining which hours correspond to peak, off-peak and shoul-
der respectively. (This assumes that the same ordering applies to all nodes in the
transmission system.) The total demand in MW in each node i is then averaged
over these trading periods to get a total demand rate Di(b, t) for each block. The
energy requirement in node i for each block b in week t will be its duration T (b, t)
times the average demand rate Di(b, t) for this block.
The choice of what data to include in demand is a delicate matter. Publicly

available demand figures (e.g. those in the Centralized Data Set [1] (CDS)) make
various assumptions about what embedded generation and demand is included.
These must be carefully studied to ensure that demand is not overlooked or double
counted.
The DOASA model aggregates demand to three locations (SI, HAY, NI) rep-

resenting the South Island, the lower North Island, and the upper North Island,
and allows transfers between these regions limited by line capacities. We empha-
size here that DOASA assumes that all line losses from transmission are zero.
This means that aggregating demand in each region will ignore the intra-regional
losses, implying that the regional totals of historical demand will underestimate
the true demand to be met by generation and net imports to SI, HAY, and NI.
So some inflation of total demand is needed to account for these losses. If the
aggregation is carried out geographically then ignoring line losses might also bias
the generation mix in the dispatch towards geographically close (yet electrically
distant) plant.
To overcome these effects, the user can adopt some form of demand scaling.

One option is to apply a uniform scaling to demand, but this does not reflect
the fact that demand is concentrated in some nodes (e.g. TWI which contains a
large aluminium smelter) and not in others (e.g. WKM that meets the needs of a
dispersed region in our model). The approach followed will depend on the purpose
of using DOASA. If one is back testing on a historical year then the aggregate
(into SI, HAY, and NI) of historical dispatch at the generators can be used as a
proxy for the demand adjusted for losses. Of course this will beg the question of
whether this was an optimal allocation of generation that DOASA is intended to
compute, but it might serve as a starting point. Another option is to estimate
historical demand using the approach of Philpott and Guan as described in [8].
If the user is applying DOASA to a future year then the estimates of aggregate
demand and its distribution over load blocks will depend on the scenario that is
being investigated.
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In meeting demand, in case of supply shortages, load shedding (in MW) is
allowed at high costs. The costs depend on the type of customers and amount of
reduction (in $/MWh). Load in each node is divided into three sectors to repre-
sent different types of customers, which are industrial, commercial and residential,
and each sector has some distribution in each island. The default proportions are
the proportions of consumption in 2003 adjusted to higher commercial and res-
idential proportions in the North Island due to a denser population, and to a
higher industrial proportion in the South Island due to an aluminium smelter.
Although these proportions change over the years, for simplicity we have assumed
they are constant. Each sector is then divided into three segments to represent
the amount of reduction, namely 5%, 5% and 90%. The third segment represents
unplanned interruption of power supply. The cost for load shedding is called
the value of loss load, or VOLL, in the electricity industry. The VOLLs for the
industrial sector are set to be lower than the other two and the VOLLs increase
over segments in each sector. We assume that up to 10% reduction in load can
be achieved at a relatively low cost, but the value of unplanned interruption is
very high ($10,000/MWh).

3.3 Inflows

The inflows ω(t) are sampled from historical inflow observations. Inflows are
measured in cumecs as weekly averages. The hydro system assumes that seven
reservoirs, Manapouri-Te Anau, Hawea, Ohau, Pukaki, Tekapo, Benmore and
Taupo, can store water from week to week. The remaining reservoirs are treated
as run-of-river plant with limited intra-week flexibility.
DOASA constructs a policy by solving a large number of stage problems,

which are linear programs. In order for the algorithm to work, each stage problem
must have a feasible solution. Otherwise the algorithm will terminate with an
infeasible stage problem message. One source of infeasibility is a week in which
inflows are so low that minimum flow constraints (such as those for Karapiro)
must be violated. DOASA allows this violation in every stage, with a penalty
cost per MWh of violation (LB flow penalty) that is defined in the run file.
In a similar fashion, flood conditions sometimes require that river flows exceed
their nominated upper bounds. These are also allowed with a penalty cost per
MWh of violation (UB flow penalty) that is defined in the run file. The user
can experiment with these to try and settle on good values. In practice some
degree of violation is tolerated in extreme circumstances and so the penalties
should reflect this reality. The simulation output indicates when these penalties
are being incurred, and if this is deemed to be too often the user can increase the
penalty costs to discourage this.
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3.4 Dependent Inflow Adjustment

DOASA assumes stagewise independent inflows. In reality, reservoir inflows are
not stagewise independent. This means that random sequences of consecutive
inflows sampled from the assumed inflow distribution will have a different dis-
tribution from the real inflow sequences. This difference can lead to DOASA
producing overly optimistic policies during dry periods, which will give underes-
timates of the true marginal water value during these periods.
Ideally the inflow distribution should be chosen to reflect the stagewise depen-

dence properties of the actual inflow process. The exact nature of this dependence
can only be deduced from historical observations, and so there are limitations on
how close the model process will be to the true process. Furthermore, the true
distribution can only be fitted from data, and some fitted distributions will be
unsuitable for use in SDDP-type algorithms like DOASA. A common assumption
is to use PARMAmodels, which requires linear autoregressive models to be fitted.
Such assumptions will lead to marginal water value estimates that might differ
from the true values.
An alternative approach adjusts the empirical inflow distribution to make it

share some properties that we believe are present in the true distribution. There
are different approaches to doing this. The approach followed by DOASA is called
the Dependent Inflow Adjustment (DIA). DIA is applied to inflows when cutting
planes are computed (and so it affects the policy and the marginal water values),
but not in historical simulations, where the actual sequences are used.
DIA works on the inflow sequence for each reservoir separately as follows.

Consider an historical inflow sequence h(t, y) of inflows in week t of year y =
1, 2, . . . , N . Given such a sequence, denote the sample average inflow for week t
of the year by

a(t) =

∑
y h(t, y)

N

and the one period standard deviation for week t of the year by

σ(t) =

√∑
y

(h(t, y)− a(t))2

N
.

In DIA, the user selects an integer number of weeks (w) for which the inflow
sequence will be adjusted. The number w is the same throughout the year, and
loosely represents the horizon over which we wish to represent the total inflow
distribution as well as possible. If w = 0 or 1, then the inflows will remain the
same as the original data, assumed to be stagewise independent.
If w > 1, then w consecutive weeks will be used to adjust the single period

historical inflows. For each starting week t the total inflow over w weeks is
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computed, to give for each t:

W (t, y) = h(t, y) + h(t+ 1, y) + . . .+ h(t+ w − 1, y).

The average m(t) and standard deviation ρ(t) of W (t, y) is then computed:

m(t) =

∑
yW (t, y)

N

ρ(t) =

√∑
y(W (t, y)−m(t))2

N
.

These values represent the mean and standard deviation from the random variable
which is the sum of w consecutive inflows. An independent inflows assumption
would give a standard deviation of about

√
wσ(t) which will be smaller than ρ(t)

in general. To adjust the standard deviation, h(t, y) is replaced by

g(t, y) = a(t) +
(W (t, y)−m(t))√

w
(1)

Then the sum of w consecutive such inflows assumed to be independent has
variance

w
1

N

∑
y

(
W (t, y)−m(t)√

w

)2
= ρ(t)2.

We require g(t, y) to be non-negative, but some of the values obtained by (1)
will be negative. These values are truncated to give

d(t, y) = max{0, g(t, y)}.
Truncation implies that the averages of the d(t, y) values will overestimate the
true average inflows and so the inflows are scaled down to give a sequence with
the average matching that of a(t). In other words the final adjusted inflows we
use are:

k(t, y) =
Nd(t, y)a(t)∑

y d(t, y)
.

Observe that truncation and scaling will reduce the variance slightly, so the sum
of w consecutive k(t, y) will have variance less than ρ(t)2 if the sum involves weeks
where truncation occurs.

9



3.5 Generators

In New Zealand, dispatches of some generators have limited control, such as those
from cogeneration, geothermal plant, run-of-river hydro and wind. Although
these have low marginal cost, their availability is subject to the vagaries of inflows
and wind, and so we cannot centrally dispatch these in our model.
Our approach is to treat some of this generation as embedded (to be subtracted

from demand4) and some to be fixed generation (to be dispatched at fixed levels).
The remaining generation (thermal and hydro) is treated as variable. How to
treat different generators is at the discretion of the user, but care must be taken
to avoid double counting or missing generation. In DOASA fixed generation is
defined in the file fixed_stations.csv. This file should include all cogenera-
tion, geothermal plant, run-of-river hydro and wind that is not included in de-
mand already, and is not already included in the files thermal_stations.csv and
hydro_stations.csv. Some essentially run-of-river hydro plant is also included
in hydro_stations.csv. These stations do not store water, and so generate
the minimum of their capacity and the power that would result from using the
observed inflow and upstream releases. Each generator has a nominal dispatch
capacity (in MW), and a nominal conversion factor (in MW/cumec) to compute
energy generated from flow through the generator at the average headwater levels.

3.6 Thermal fuel costs

Thermal generators run on different types of fuel, either coal, gas, or diesel, and
have different heat rates (in GJ/MWh). Each station has a nominal capacity (in
MW). We assume that a generator can supply any quantity of power up to its
capacity at the fuel cost (in $/MWh). The fuel cost is the product of heat rate
and the wholesale cost for fuel (in $/GJ). The offering thermal generators (using
CDS nomenclature) are shown in Table 3.

4Note that the historical dispatches of embedded generators are aggregated into demands
in the CDS. Their dispatches offset some demands and thus if the dispatches are larger than
demand then negative values are presented. But as described in the CDS, some negative values
have been set to zero, but no information is given on how much and where, and thus it is not
possible to obtain all historical dispatches for embedded generators.
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Generator Station Capacity Heat rate Fuel Node
GEN.Stratford.220KV Stratford 387 7.3 Gas NPL
GEN.Thermal.Huntly.gas Huntly 430 6.8 Gas HLY
GEN.Thermal.Huntly.main.g1 Huntly 260 10.5 Coal HLY
GEN.Thermal.Huntly.main.g2 Huntly 260 10.5 Coal HLY
GEN.Thermal.Huntly.main.g3 Huntly 260 10.5 Coal HLY
GEN.Thermal.Huntly.main.g4 Huntly 265 10.5 Coal HLY
GEN.Thermal.Huntly.Peak Huntly 50 9.5 Gas HLY
GEN.Thermal.NewPlymouth.110KV.g1 NewPlymouth 120 11 Gas NPL
GEN.Thermal.NewPlymouth.110KV.g2 NewPlymouth 120 11 Gas NPL
GEN.Thermal.NewPlymouth.220KV.g3 NewPlymouth 120 11 Gas NPL
GEN.Thermal.Otahuhu.B Otahuhu 396 7.05 Gas OTA
NI.Whirinaki.220KV Whirinaki 159 11 Diesel WHI

Table 3: Offering thermal generators and their locations, capacities, heat rates
and fuel types.

Note that we assume all fuel can be purchased on demand at the fuel cost.
In practice, natural gas is typically acquired under a take-or-pay contract that
gives a different operating imperative from that faced by a purchaser with more
flexibility. Similarly coal is typically used from a stockpile that is periodically
restocked; in this setting, supply shortages can lead to high opportunity costs.
DOASA ignores both of these restrictions.
Observe that some thermal generation units might be commissioned or became

decommissioned in the period of interest. We model this by including a start year
and start week for commissioning and end week and end year for decommisioning.
In practice, thermal generators are subject to ramping constraints which limit

the change in dispatch between consecutive trading periods. There are also unit
commitments for some thermal stations, e.g., a minimum dispatch of 110 MW
for the generators in the Huntly station combined if any of them is dispatched,
which may also limit their dispatch. The DOASA model ignores both of these
features.
DOASA enables the user to de-rate generators (in MW) to model units that

have been removed for planned maintenance. This is done by reducing the ca-
pacity of the generators by a certain mumber of MW in predefined weeks in the
planning horizon. Users may choose these periods based on their own forecasts
or make use of data in the POCP database [9]. The schedule in POCP defines
the starting and end time of scheduled maintenance for generators5.

5We have observed from historical data that in some declared maintenance periods, the
generators in POCP still offered or were dispatched energy. We have also observed that the re-
duction of capacities displayed in the schedules may not be consistent with the actual reduction
in historical data.
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3.7 Cuts

As stated above DOASA computes an optimal policy for minimizing the expected
cost of thermal generation and shortages. The policy is defined by the optimal
solution to the stage problem

Pt(x̄, ω): min
∑

i∈N
∑

m∈F(i) φm
∑

b T (b, t)fm(b, t) + E[Ct+1(x(t), ω(t+ 1))]

s.t. gi(y(b, t)) +
∑

m∈F(i) fm(b, t) +
∑

m∈H(i) γmhm(b, t) = Di(b, t), i ∈ N ,

x(t) = x̄− S
∑

b T (b, t)(Ah(b, t) + As(b, t)− ω(t)),

0 ≤ fm(t) ≤ am, m ∈ F(i), i ∈ N ,

0 ≤ hm(t) ≤ bm, 0 ≤ sm(t) ≤ cm, m ∈ H(i), i ∈ N ,

0 ≤ xj(t) ≤ rj, j ∈ J , y ∈ Y .

where Ct+1(x(t), ω(t + 1)) denotes the expected future cost of an optimal policy
applied in weeks t+ 1, t+ 2, . . . , T .
To solve Pt(x̄, ω) to determine the dispatch in any week we need a model for

Ct+1(x(t), ω(t+ 1)). DOASA’s model is based on the SDDP technique of Pereira
and Pinto [6]. The expected future cost function is recorded by storing an outer
approximation defined by K cutting planes or cuts, giving

E[Ct+1(x(t), ω(t+ 1))] ≈ max
k=1,2,...K

{αt+1,k − β>t+1,kx(t)}.

This is illustrated in Figure 2.

True expected future cost

x

θ

Storage level in reservoir j

Outer approximation defined by cuts

Cost ($)

Figure 2: The cuts give the future cost θ at a particular state. Here state
variable xj is the level in reservoir j.
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This gives a policy defined to be the optimal solution of the approximate stage
problem

P̂t(x, ω): min
∑

i∈N
∑

m∈F(i) φm
∑

b T (b, t)fm(b, t) + θt+1

s.t. gi(y(b, t)) +
∑

m∈F(i) fm(b, t) +
∑

m∈H(i) γmhm(b, t) = Di(b, t), i ∈ N ,

x(t) = x−
∑

b T (b, t)(Ah(b, t) + As(b, t)− ω(t)),

0 ≤ fm(t) ≤ am, m ∈ F(i), i ∈ N ,

0 ≤ hm(t) ≤ bm, 0 ≤ sm(t) ≤ cm, m ∈ H(i),

θt+1 + β>t+1,kx(t) ≥ αt+1,k k = 1, 2, ...K,

0 ≤ xm(t) ≤ rm, m ∈ H(i), i ∈ N , y ∈ Y .

In summary, the optimal policy is stored as a set of K cutting planes for
each stage. These are recorded as an intercept αt+1,k, and a vector βt+1,k of
marginal values, defining one value for each reservoir. Given these numbers the
(approximately) optimal dispatch for week t when the inflow vector for that week
is ω, can be found by solving P̂t(x, ω).

4 Input files for DOASA

The input data for DOASA are provided by comma-separated files or csv files. In
this section we define each of these files and explain what it contains. The input
files are all contained in the directory Input\input_csv_files.

4.0.1 run.csv

The key file in this directory is run.csv. This presents the parameters for the
run to be solved. These are:
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Run name text to be given to the name of the run
Save output in text in giving the name of the directory

for output (defaults to Output)
System "Input/input_csv_files/index.csv"
Problem start year integer giving the year of the study, e.g. 2005
Problem start week integer giving the first week of the study (usually 1)
Number of weeks integer giving the number of weeks in the study
Use saved cuts from text in double quotes giving the path to cuts files

or "" if no previously computed cuts available
Maximum iterations integer giving how many new cuts to compute per

stage, typically in order of thousands
Sample start year integer giving the first year from which inflows

will be sampled
Sample end year integer giving the last year from which inflows

will be sampled
Inflow correlation length integer giving the number of weeks to

use in the DIA procedure for inflows
Simulation type text in double quotes indicating the type of simulation

to run: "none" "Monte Carlo" or "historical"
Simulation sample size Number of samples to simulate either in

"Monte Carlo" or "historical"
Random seed integer that seeds the sampling. Choosing this to be

the same in different runs will replicate results.
LB flow penalty penalty in $/MWh on river flows going below

their lower bounds.
UB flow penalty penalty in $/MWh on river flows going above

their upper bounds.

It is important to bear in mind that DOASA has two modes, policy genera-
tion and simulation. Although a simulation can follow a policy generation using
a single run.csv file, it is good practice to separate these into two different ap-
plications of the software. In other words, compute a policy and save the cuts
and then load these to simulate the policy with a new run.csv file.
When computing a policy DOASA samples inflows randomly from years in

the flow sequences between Sample start year and Sample end year (inclusive).
There is no mechanism to select, say, only dry years from a contiguous set of
years (although one could construct a synthetic inflow file and rename the dry
years to be consecutive). The Sample start year and Sample end year are also
used in MonteCarlo simulation. They are not used in historical simulation. All
simulations begin in Problem start week of Problem start year. When histori-
cal simulations are carried out, "Simulations sample size" inflow sequences are
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selected from the file inflows.csv. starting at the latest possible sequence.
For example suppose Simulations sample size=3. Thus if a 75 week sequence

is to be simulated using historical data starting on June 1, 2006 and the inflow
file runs up to December 31, 2011, then DOASA will run 3 simulations with the
75 week historical inflow sequences beginning in June 1, 2010, June 1, 2009, and
June 1, 2008. Note that the June 1, 2011 does not have enough recorded data to
make this eligible.

4.0.2 index.csv

The file index.csv defines locations for all of the input files used by DOASA.
This structure need not be changed if DOASA uses the same input file names
and directories in each run.

4.0.3 demand.csv

Demand is represented by three load blocks in each week. The values in each
column are the number of MWh in that block. This means that they give
T (b, t)Di(b, t). The demand file has six comma separated columns. The node
refers to the transmission system and is either NI, HAY or SI in the EA imple-
mentation which is restricted to these three nodes.

% Demand (MWh):
NODE YEAR WEEK peak shoulder offpeak
NI 2005 1 91682.52 119621.6 56945.59
NI 2005 2 152152.7 95206.62 56240.92

4.0.4 fixed_stations.csv

Some stations have fixed generation in MW. These are listed in this file as shown.
This generation (when scaled by T (b, t)) is subtracted from demand in the corre-
sponding node.

STATION NODE YEAR WEEK peak shoulder offpeak
Aniwhenua NI all all 15 15 15
Patea NI all all 14 14 14
Wheao NI all all 13 13 13
Highbank SI all all 11 11 11
Waipori SI all all 22 22 22

4.0.5 hours_per_block.csv

In each week t, each demand block b has a certain number of hours T (b, t) (adding
up to 168). These are listed in this file:

15



% Hours per block:
YEAR WEEK peak shoulder offpeak

2005 1 43 74 51
2005 2 69 54 45

4.0.6 hydro_arcs.csv

This file gives river reaches that are used for transferring water and do not have
stations on them. Minimum flow rates and maximum flow rates in cumecs are
given.

ORIG DEST MIN_FLOW MAX_FLOW

Lake_Wanaka Lake_Dunstan na na
Lake_Hawea Lake_Dunstan na na
Clyde_tail Lake_Roxburgh 50 1000
Roxburgh_tail SEA 250 850

Lake_Taupo Lake_Aratiatia na na
Karapiro_tail SEA 148 na

Lake_Tekapo Lake_Scott na 850
Lake_Scott Tekapo_canal_head na na
Lake_Scott Lake_Benmore na 850
Tekapo_canal_head Tekapo_canal_tail na 131
Lake_Pukaki Lake_Benmore na 3400
Lake_Pukaki Pukaki_Ohau_canal_junction na 560
Lake_Ohau Pukaki_Ohau_canal_junction na 200
Lake_Ohau Lake_Ruataniwha 8 560
Lake_Ruataniwha Lake_Benmore na 1740
Ohau_BC_canal Lake_Benmore na na
Waitaki_tail SEA 150 na

4.0.7 hydro_junctions.csv

This file gives a list of names of small lakes and river junctions, excluding the
main reservoirs. A sample of these is given below.

Lake_Aratiatia
Lake_Ohakuri
Lake_Atiamuri
Lake_Whakamaru
Lake_Maraetai
Lake_Waipapa
Lake_Arapuni

4.0.8 hydro_stations.csv

This file describes the hydro stations and how they are linked together by arcs
in the river chains. Each station has a capacity in MW and a specific power
parameter that defines the conversion rate of cumecs to MW. Bounds can also
be specified to limit the spill.
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GENERATOR HEAD_WATER_FROM TAIL_WATER_TO POWER_SYSTEM_NODECAPACITY SPECIFIC_POWER SPILLWAY_MAX_FLOW
Arapuni Lake_Arapuni Lake_Karapiro NI 196.7 0.439847649 na
Aratiatia Lake_Aratiatia Lake_Ohakuri NI 78 0.273437947 na
Atiamuri Lake_Atiamuri Lake_Whakamaru NI 84 0.206469423 na
Karapiro Lake_Karapiro Karapiro_tail NI 100 0.266255522 na
Maraetai Lake_Maraetai Lake_Waipapa NI 360 0.505804564 na
Ohakuri Lake_Ohakuri Lake_Atiamuri NI 112 0.281025016 na
Waipapa Lake_Waipapa Lake_Arapuni NI 55 0.144558945 na
Whakamaru Lake_Whakamaru Lake_Maraetai NI 100 0.316127853 na
Aviemore Lake_Aviemore Lake_Waitaki SI 230.2 0.327542644 5400

4.0.9 inflows.csv

This file describes the inflows to the various points of the system. Inflows are
defined in cumecs for 27 locations in the system. Each location is either a hydro
junction as above or is a storage reservoir. Inflows are defined as a rate of inflow
in cumecs assumed constant over each week. These data are taken directly from
the inflow sequences provided in the CDS. Currently the inflow files provided with
DOASA run from 1970 to 2007, but these can be updated with new information
as it becomes available from the CDS6. The file structure for inflows is as below.

CATCHMENT Lake_Aviemore Lake_Benmore Lake_Hawea Lakes_Manapouri_Te_Anau
INFLOW_REGION SI SI SI SI
YEAR WEEK

1970 1 22.6924 56.731 70.98714286 422.4994286
1970 2 16.05834286 40.14585714 61.96285714 274.3777143
1970 3 13.88491429 34.71228571 61.15985714 387.8231429
1970 4 22.24822857 55.62057143 136.2862857 356.9377143

2007 49 13.79262857 34.48157143 40.37628571 139.0532857
2007 50 19.99554286 49.98885714 105.566 471.1974286
2007 51 24.15171429 60.37928571 94.63428571 250.3771429
2007 52 16.2299 40.57475 60.490875 403.68275

4.0.10 lost_load.csv

This file gives the amount of load that can be shed in each node by sector and
load segment, as well as a matching value of lost load. There are three sectors
industrial, commercial, and residential. In each load segment in each node the
sector makes up a certain proportion of demand. For example in the HAY re-
gion we have assumed that industrial load is 34%, commercial load is 27% and
residential load is 39% of the load amounts in each load block (see demand.csv).
The cost of reducing load of each type is defined by the COST column. Thus the
cost of reducing commercial load in HAY is $2000/MWh for the first 5%, then
$4000/MWh for the next 5% then $10000/MWh for the rest of the commercial
load in this region. So if in some week the regional HAY load was 1000MW in

6As of April 2012, inflow data in the CDS are provided up to June 2010.
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offpeak, 2000MW in shoulder, and 3000 MW in peak, we would have 270MW
commercial load in offpeak, 540 MW in shoulder, and 810 MW in peak. We
could then shed 13.5MW in offpeak, 27 MW in shoulder, and 40.5MW in peak
times all at a system cost of $2000/MWh. The next 13.5MW in offpeak, 27
MW in shoulder, and 40.5MW in peak times of commercial load to shed costs
$4000/MWh, and shedding any more costs $10000/MWh.
The load shedding model is intended to reduce energy consumption in dry

periods rather than responding to excess demand in peak periods. This is why
the cost of shedding is the same across the different load segments. The full table
is given below.

NODE ISLAND SECTOR SEGMENT PROPORTION BOUND COST
NI NI industrial low 0.34 0.05 1000
NI NI industrial medium 0.34 0.05 2000
NI NI industrial high 0.34 0.9 10000
NI NI commercial low 0.27 0.05 2000
NI NI commercial medium 0.27 0.05 4000
NI NI commercial high 0.27 0.9 10000
NI NI residential low 0.39 0.05 2000
NI NI residential medium 0.39 0.05 4000
NI NI residential high 0.39 0.9 10000
HAY NI industrial low 0.34 0.05 1000
HAY NI industrial medium 0.34 0.05 2000
HAY NI industrial high 0.34 0.9 10000
HAY NI commercial low 0.27 0.05 2000
HAY NI commercial medium 0.27 0.05 4000
HAY NI commercial high 0.27 0.9 10000
HAY NI residential low 0.39 0.05 2000
HAY NI residential medium 0.39 0.05 4000
HAY NI residential high 0.39 0.9 10000
SI SI industrial low 0.58 0.05 1000
SI SI industrial medium 0.58 0.05 2000
SI SI industrial high 0.58 0.9 10000
SI SI commercial low 0.15 0.05 2000
SI SI commercial medium 0.15 0.05 4000
SI SI commercial high 0.15 0.9 10000
SI SI residential low 0.27 0.05 2000
SI SI residential medium 0.27 0.05 4000
SI SI residential high 0.27 0.9 10000

4.0.11 reservoirs.csv

This file defines the seven reservoirs used in the DOASA representation of the
New Zealand system. The capacity and initial state are measured in cubic metres,
and represent the capacity of the operating range, and the inital volume above
minimum operating level.
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RESERVOIR INFLOW_REGION CAPACITY INI_STATE
Lake_Benmore SI 423451076 394155969.1
Lake_Hawea SI 1378764328 874260828
Lakes_Manapouri_Te_Anau SI 1501878016 393126882.9
Lake_Ohau SI 57245218.56 23125453.79
Lake_Pukaki SI 2425440000 570043000
Lake_Taupo NI 848624230 692149298.4
Lake_Tekapo SI 823190000 351950000

4.0.12 station_outages.csv

DOASA models outages for planned maintenance (as well as possibly random
shutdowns) as known reductions in capacity inMWas shown in the table station_outages.csv.

YEAR WEEK Stratford_220KV Huntly_e3p Huntly_main_g1 Huntly_main_g2 Huntly_main_g3 Huntly_main_g4 Huntly_peaker
2005 1 0 0 0 0 0 265 0
2005 2 0 0 0 0 0 143.8452381 0
2005 3 0 0 0 0 57.26190476 0 0
2005 4 0 0 0 0 0 0 3.273809524
2005 5 0 0 64.26785714 0 0 0 0

4.0.13 terminal_water_value.csv

In the absence of a terminal water value, DOASA would leave all reservoirs empty
or nearly empty in the final week of the plan year. To avoid this we can provide
a national water value surface to be provided to the total national stored energy
( in MWh). This is expressed as a marginal water value surface as shown below.

STORED_ENERGY  VALUE
1000 137.2183986
1500 85.97183215
2000 55.85992946
2500 33.68992837
3500 18.99872191

Here, the first 1000MWh of water stored in all reservoirs is worth $137 per MWh,
the next 500 MWh is worth $86/MWh and so on. Observe that water values
for each reservoir are output by DOASA, but there are no "WaterValues" for
the final week because that week’s values are exogenously set in the table shown
above.

4.0.14 thermal_fuel_costs.csv

Data for thermal stations can be obtained from various sources7. Thermal fuel
costs have been discussed above. These are specified in a table as shown below.

7These data are available from [3, 2, 5]
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YEAR WEEK coal diesel gas
2005 1 4 18.68 4.49
2005 2 4 18.68 4.49
2005 3 4 18.68 4.49
2005 4 4 18.68 4.49

4.0.15 thermal_stations.csv

Data for thermal stations (apart from fuel cost) are defined in the file thermal_stations.csv.
This file defines the fuel used, the heat rate of the station and its capacity in MW.
Commissioning and decommisioning dates can also be included if these are ma-
terial.

GENERATOR NODE FUEL HEAT_RATE CAPACITY START_YEAR START_WEEK END_YEAR END_WEEK
Stratford_220KV NI gas 7.3 387 0 0 0 0
Huntly_e3p NI gas 6.8 430 2007 23 0 0
Huntly_main_g1 NI coal 10.5 260 0 0 0 0
Huntly_main_g2 NI coal 10.5 260 0 0 0 0
Huntly_main_g3 NI coal 10.5 260 0 0 0 0
Huntly_main_g4 NI coal 10.5 265 0 0 0 0
Huntly_peaker NI gas 9.5 50 2004 23 0 0
NewPlymouth_110KV_g1 NI gas 11 120 0 0 2007 38
NewPlymouth_110KV_g2 NI gas 11 120 0 0 2007 38
NewPlymouth_220KV_g3 NI gas 11 120 0 0 2007 38
Otahuhu_B NI gas 7.05 396 0 0 0 0
NI_Whirinaki_220KV NI diesel 11 159 2004 22 0 0

4.0.16 transmission.csv

This table shows the transmission lines and their capacity in MW. DOASA is
configured to solve with three nodes connected in a line as shown by the table
below. It is possible to increase the capacity of these lines but the user cannot
alter the connectivity. There is no loss in transmission. Power is assumed to be
transmitted at a constant rate in each demand block.

FROM_NODE TO_NODE CAPACITY
NI HAY 1000
HAY NI 1000
HAY SI 1040
SI HAY 1040

4.1 InitialCuts

DOASA produces a policy defined by cutting planes. Since good policies typically
require a large number of these (in the order of thousands) it makes sense to be
able to use cuts computed in previous runs. Cuts from any run are saved in a
set of csv files in a directory specified by the user ( defaulting to Output/<run
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name>/Cuts). To warm start DOASA using these cuts, the user moves the saved
cuts from (Output/<run name>/Cuts) to Input/InitialCuts. At present this
has to be done manually, but it may be possible to do it more elegantly via
the EMI interface. Given a set of initial cuts DOASA will augment these with
additional cuts. It is important to note that the overall problem being solved
must be the same. Cuts valid for one problem can not be used to warm start
another problem if the data (such as inflow sequences used or lost-load penalties)
has changed.
The main use of the Initial Cuts feature is to enable simulation of the policy

computed. Although DOASA can do both cut generation and simulation within
a single run, it would be more usual for a run to be one or the other: either
generating cuts to be used in later simulations, or running a simulation based on
previously saved cuts. This enables the user to perform out-of-sample simulation
(e.g. with completely new inflow samples) or simulation focusing on a particular
plan year.

5 Output files for DOASA

The output from DOASA is saved in a directory that is specified by the user in
the run.csv file. Without this, the directory defaults to Output/<run-name>.
In the output directory there are six files and four possible directories. The six
files are:

convergence.csv This file gives information relating to the convergence of
DOASA. In each iteration DOASA computes a lower bound on the total ex-
pected cost (including all penalty costs) of an optimal policy. This lower bound
is non-decreasing and usually improves strictly at every iteration. The algorithm
can be terminated when the lower bound has not changed for several iterations.
A more precise convergence test can be carried out by carrying out a Monte-Carlo
simulation of a candidate policy. The estimated expected cost of this policy (and
its standard error) gives a confidence interval for the true expected cost of the
policy that can be used to see if this is close to the lower bound (see section 6
below).

profile.txt The profile file displays the computation time of a run and where
DOASA was spending most of its time.

doasalog.txt The log file doasalog.txt displays the progress of forward and
backward passes that are typically directed to the console.

21



SampledScenarios.csv The sampled scenarios give the scenarios created in
the current run of DOASA. These scenarios are sequences of years sampled with
equal probability from Sample start year to Sample end year as specified in the
run file. DOASA generates a set of 200 such scenarios as a default. Each forward
pass of DOASA then selects from these sequentially. If more than 200 iterations
are required, then the code generates another set of scenarios.

MarkovStates.csv This output is relevant only to an enhanced version of
DOASA that uses a Markov chain to represent stagewise dependence in inflows.

Transition Matrix.csv This output is relevant only to an enhanced version of
DOASA that uses a Markov chain to represent stagewise dependence in inflows.

The output directories are as follows:

5.0.1 Archive

This contains a copy of all the input data for the run which allows it to be
replicated if necessary. It also contains a file called inflows-adjusted.csv which
contains the inflow values produced by the DIA procedure.

5.0.2 Cuts

This directory contains a set of csv files, one for each stage of the plan year.
Each file (e.g. BendersCuts_3_1.csv for the third week) contains a row for each
cut added. The first column in this row is the intercept α, and the next seven
columns give the state coeffi cients of the cut (β). The last column should always
be zero.

6552749.6 0.007448 0.003427 0.008188 0.014843 0.014843 0.012276 0.011671 0
5040392.3 0.00462 0.000896 0.006593 0.010153 0.010153 0.013425 0.00462 0
25656581 0.013261 0.029253 0.01443 0.026429 0.026429 0.019383 0.041161 0
35598981 0.015625 0.012009 0.016987 0.031139 0.031139 0.039294 0.048467 0
27586894 0.009214 0.006552 0.011933 0.018748 0.018808 0.013279 0.019887 0

195359274 0.013581 0.010818 0.000344 0.026808 0.027067 0.125419 0.042953 0
266349256 0.015227 0.067571 0.016564 0.030057 0.030348 0.010679 0.031433 0
268165491 0.011667 0.00572 0.000801 0.022843 0.024634 0.013659 0.038424 0
273648947 0.012338 0.008512 0.004521 0.024293 0.024634 0.015849 0.038424 0
277062737 0.012533 0.007683 0.010365 0.02471 0.024993 0.013531 0.038956 0
273660045 0.012353 0.008049 0.003477 0.024215 0.024715 0.015319 0.038449 0

Example of a cuts file BendersCuts_3_1.csv. The first column is the intercept
α and the remaining columns define the values of β for each storage reservoir.
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The state coeffi cients of the cuts play the role of marginal water values (in
$/m3) in a particular reservoir when the cut is binding. For example, suppose
the reservoir levels are defined by their initial state defined in the following table.

RESERVOIR INFLOW_REGION CAPACITY INI_STATE
Lake_Benmore SI 423451076 394155969.1
Lake_Hawea SI 1378764328 874260828
Lakes_Manapouri_Te_Anau SI 1501878016 393126882.9
Lake_Ohau SI 57245218.56 23125453.79
Lake_Pukaki SI 2425440000 570043000
Lake_Taupo NI 848624230 692149298.4
Lake_Tekapo SI 823190000 351950000

Then supposing that all reservoirs have their initial state at the end of week three,
the estimate of future cost from the first 11 cuts is defined by the tenth cut with
intercept 277062737. If we fix all reservoirs apart from Benmore at their initial
levels then the cost to go as a function of Benmore storage is locally of the form
shown in Figure 3. The slope of this line is -$0.012533/m3 as predicted by the
vaue of β in the table above.

Figure 3: Cost-to go function for Benmore assuming that all reservoirs are at
initial levels. The slope of the blue line is -$0.012533/m3

5.0.3 Water Values

Corresponding to each Benders cut file there is a file giving an estimate of national
marginal water value in $/MWh. This is computed using different levels of total
stored energy in the New Zealand system (measured in GWh), divided amongst
the storage reservoirs proportional to their capacity. To compute the energy
in GWh, DOASA takes the specific power of each hydro station provided in
hydro_stations.csv and converts this to a specific energy (MJ/m3) of water
at each point in the hydro system. Using these factors, the stored volumes in
each reservoir (in m3 above minimum levels) can be converted into stored energy
(in GWh). The file below as an example shows that at the end of the week in
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question, the marginal value of the first 58.83 GWh is $1413.46/MWh, the next
(517.29 - 58.83) GWh are each worth $46.24/MWh, and so on.

Stored_energy  Water_value
58.83 1413.46

517.29 46.24
853.4 43.93

1344.24 42.02
1940.9 41.69

2434.04 41.15
3201.34 40.53

3978.6 39.55
4413.27 30.98

Example of Marginal Water Value file. The total energy is measured in GWh
and the marginal water values are measured in $/MWh.

5.0.4 Simulation

The simulation directory contains information obtained by simulating the policy.
Simulation can be done using Monte Carlo simulation in which the inflows in each
week are randomly sampled from historical inflows experienced in that week, or
using actual historical inflow sequences. In the first case the policy is simulated
using inflows that are assumed to be stagewise independent. This is useful for
testing how close the policy is to an optimal policy under this assumption. The
second case is useful for testing how the policy would perform in any historical
year of inflows. The historical inflows have a higher degree of persistence than the
Monte Carlo samples and so they give a better estimate of the expected thermal
cost of the policy.
The simulation directory contains output files of various types. The rows

correspond to scenarios (simulation realizations) and the columns to weeks. We
will describe each in turn.

FlowLBCost.csv Cost ($) from flows going below their lower bound in each
week in each scenario.

FlowUBCost.csv Cost ($) from flows going above their upper bound in each
week in each scenario.

FutureCost.csv Expected future cost ($) in each scenario at the end of each
week.

LostLoadCost.csv Cost ($) from lost load in each scenario at the end of each
week.
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PresentCost.csv The total cost ($) in each stage in each scenario. This is the
sum of FlowLBCost, FlowUBCost, LostLoadCost and ThermalCost.

SpilledEnergy_offpeak.csv Spilled energy in MWh in offpeak periods in
each week in each scenario.

SpilledEnergy_peak.csv Spilled energy in MWh in peak periods in each
week in each scenario.

SpilledEnergy_shoulder.csv Spilled energy in MWh in shoulder periods in
each week in each scenario.

StoredEnergy.csv Stored energy in MWh in all reservoirs at the end of each
week in each scenario.

ThermalCost.csv Thermal fuel cost ($) in each stage in each scenario.

TotalCost.csv Total fuel cost over all stages plus expected future cost ($) in
each scenario.

Flow The flow files give flows in cumecs in every hydro arc of the system.
Some of these correspond to flow through station turbines and some correspond
to spill. The first row is the average over all simulations, and the remaining rows
are individual realizations. The columns correspond to weeks.

Volume The volume files give volumes in cubic metres above minimum datum
points for each of the seven storage reservoirs. The first row is the average over
all simulations, and the remaining rows are individual realizations. The columns
correspond to weeks.

6 Outer approximation algorithms

In this section we review the theory of outer approximation algorithms for solving
multi-stage stochastic programs with stage-wise independence. This section is
included for completeness and can be skipped. These methods are all variations
of the Stochastic Dual Dynamic Programming (SDDP) algorithm proposed by
[6] as a solution strategy for multi-stage stochastic linear programming. This
algorithm can be proved to converge with probability 1 to an optimal policy
([4],[7]).
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The class of problems we consider have T stages, denoted t = 1, 2, . . . , T , in
each of which a random right-hand-side vector bt(ωt) ∈ Rm has a finite number of
realizations defined by ωt ∈ Ωt. We assume that the outcomes ωt are stage-wise
independent, and that Ω1 is a singleton, so the first-stage problem is

z = min c>1 x1 + E[Q2(x1, ω2)]
s.t. A1x1 = b1,

x1 ≥ 0,
(2)

where x1 ∈ Rn is the first stage decision and c1 ∈ Rn a cost vector, A1 is a
m× n matrix, and b1 ∈ Rm.
We denote by Q2(x1, ω2) the second stage costs associated with decision x1

and realization ω2 ∈ Ω2. The problem to be solved in the second and later stages
t, given state xt−1 and realization ωt, can be written as

Qt(xt−1, ωt) = min c>t xt + E[Qt+1(xt, ωt+1)]
s.t. Atxt = bt(ωt)− Etxt−1, [πt(ωt)]

xt ≥ 0,
(3)

where xt ∈ Rn is the decision in stage t, ct its cost, and At and Et denote m× n
matrices. Here πt(ωt) denotes the dual variables of the constraints. In the last
stage we assume either that E[QT+1(xT , ωT+1)] = 0, or that there is a convex
polyhedral function that defines the expected future cost after stage T .
Outer approximation algorithms build a policy that is defined at stage t by

a polyhedral outer approximation of E[Qt+1(xt, ωt+1)]. This approximation is
constructed using cutting planes called Benders cuts, or just cuts. In other words
in each tth-stage problem, E[Qt+1(xt, ωt+1)] is replaced by the variable θt+1 which
is constrained by the set of linear inequalities

θt+1 + π̄>t+1,kEt+1xt ≥ ḡt+1,k for k = 1, 2, ...K, (4)

where K is the number of cuts. Here π̄t+1,k = E[πt+1(ωt+1)], which defines the
gradient −π̄>t+1,kEt+1 and the intercept ḡt+1,k for cut k in stage t, where

ḡt+1,k = E[Qt+1(x
k
t , ωt+1)] + π̄>t+1,kEt+1x

k
t .

The cuts are computed in a sequence of major iterations each consisting of
a forward pass and a backward pass. In each forward pass, a set of N scenarios
is sampled from the scenario tree and decisions are taken for each node of those
N scenarios, starting in the first stage and moving forward up to the last stage.
Different algorithms use different values of N . In DOASA the default is N = 1,
whereas SDDP typically uses N = 200. In each stage, the observed values of the
state variables xt, and the costs of each node in all scenarios are saved.
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At the end of the forward pass, a convergence criterion is tested, and if it
is satisfied then the algorithm is stopped, otherwise it starts the backward pass,
which is defined below. In the standard version of SDDP, the convergence test is
satisfied when z, the lower bound on the expected cost at the first stage (called
the Lower Bound), is statistically close to an estimate of the expected total
operation cost (called the Upper Bound) obtained by averaging the cost of the
policy defined by the cuts when applied to the N sampled scenarios. In this
simulation the total operation cost for each scenario is the sum of the present
cost (c>t xt) over all stages t. In DOASA we choose N = 1. This is more effective
in producing good policies with a small number of iterations. The disadvantage is
that the algorithm cannot easily compute an upper bound as it proceeds. For this
reason we terminate DOASA after a fixed number of iterations that are chosen
by the user a priori. Upon termination, an estimate of the expected cost of the
candidate policy can then be computed by simulation.
If the convergence criterion is not satisfied (or in the case of DOASA we have

not reached the iteration limit), a backward pass is carried out. This adds a cut
to each stage problem, starting at the last stage and working backwards to the
first. In each stage t we solve the next stage problems for all possible realizations
(Ωt+1). The values of the objective functions and dual variables at optimality
are averaged over all realizations to define a cut that is added to all problems at
stage t. In summary, outer approximation algorithms perform the following three
steps repeatedly until the convergence criterion is satisfied.

1. Forward Pass

For t = 1 solve (2) and save x1 and z;

For t = 2, ..., T and s = 1, ..., N ,

Solve (3), where ωt is defined by s, and save xt(s) and Qt(xt−1, ωt).

2. Convergence Test (for SDDP at 90% confidence level)

Calculate the Upper Bound: zu = c>1 x1 + 1
N

N∑
s=1

T∑
t=2

c>t xt(s)

σu =

√
1
N

N∑
s=1

(
c>1 x1 +

∑T
t=2 c

>
t xt(s)

)2
− z2u.

Calculate the Lower Bound: zl = z;

Stop if

zu − 1.96√
N
σu < zl < zu + 1.96√

N
σu,

otherwise go to the Backward Pass.
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3. Backward Pass

For t = T, ..., 2, and s = 1, ..., N ,

For ωt ∈ Ωt, solve (3) using xt−1(s) and save πt(ωt) andQt(xt−1, ωt);

Calculate a cut (4) and add it to all nodes in stage t− 1.

7 Estimating marginal water values

We expect that one of the main uses of DOASA will be to estimate marginal water
values. We digress briefly here to discuss the estimates that DOASA provides.

7.1 Independent inflows

We discuss first the case where the inflows are stagewise independent. DOASA
terminates after a fixed set of iterations with a policy defined by cutting planes
and a lower bound on the total expected cost of the optimal policy that assumes
the independent inflows used in computing the cutting planes. A typical cutting
plane has the form

θt+1 ≥ αt+1 − β>t+1xt,
where θt+1 is an estimate of the optimal expected future cost E[Qt+1(xt, ωt+1)]
under the independence assumption we have made. If for some x̄t,

E[Qt+1(x̄t, ωt+1)] = αt+1 − β>t+1x̄t (5)

then the vector β>t+1 defines the expected marginal value of water in each reservoir.
If the volume of water x̄ti in reservoir i increases by one m3 then the expected
future cost E[Qt+1(xt, ωt+1)] will decrease by βt+1,i.
Using the correspondence between cuts and marginal water values to estimate

marginal water values relies on two assumptions.
Assumption 1: We can compute E[Qt+1(x̄t, ωt+1)] exactly.
Assumption 2: The cuts that we compute at a point x̄t are exact at this

point, i.e. (5) holds.
Neither of these assumptions is true for DOASA. In the case of Assumption

1, at any stage t and state x̄t, DOASA has at its disposal only a lower bound on
E[Qt+1(x̄t, ωt+1)] under the independence assumption we have adopted. Recall
also that E[Qt+1(x̄t, ωt+1)] is the optimal expected future cost under the inde-
pendence assumption, that DOASA will never compute exactly as it converges
to this value only in the limit.
Assumption 2 is only valid at stage T −1. At earlier stages, the interpretation

of the cut slopes as marginal water values needs some care. The cuts define
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an approximate expected future cost function that we use to define a policy.
The expected cost of operating this policy can be estimated by simulation with
independent inflow sequences. The marginal water values can then be estimated
from the results of different simulations (with different initial water values). Bear
in mind that marginal water values are determined by optimal policies, and so
these simulations will deliver correct marginal water values only to the extent
that DOASA has delivered the optimal policy.
In summary, we can estimate marginal water values in two ways. The first

method, implemented in DOASA, is to determine at xt the slope of the cut that
yields maxk{αt+1,k − β>t+1,kxt}. The second estimate is obtained by simulating
the policy obtained at termination of DOASA, for different initial storage levels,
and estimating the changes in the sample average cost. Formally, for simulations
ν = 1, 2, . . . , N , we compute actions xνt and the sample average cost

C(0) =
N∑
ν=1

[
c>1 x

ν
1 + c>2 x

ν
2 + . . .+ c>T x

ν
T

]
and then repeat the exercise using common random numbers and incrementing
the storage in a reservoir by a small amount δ to give an estimate

C(δ) =
N∑
ν=1

[
c>1 y

ν
1 + c>2 y

ν
2 + . . .+ c>T y

ν
T

]
.

We then estimate the expected marginal value of water for the DOASA policy to
be

π̂ =
C(0)− C(δ)

δ
.

The DOASA policy is an approximation of the optimal policy that has corre-
sponding expected cost Φ(0) and Φ(δ) respectively. The true expected marginal
value of water (or its lowest value if it is not unique) is

π = lim
δ↘0

Φ(0)− Φ(δ)

δ
.

Now for some positive ε0 and εδ we have

E[C(0)] = Φ(0) + ε0

E[C(δ)] = Φ(δ) + εδ

so

E [π̂] =
E[C(0)− C(δ)]

δ

=
Φ(0)− Φ(δ)

δ
+
ε0 − εδ
δ

≈ π +
ε0 − εδ
δ
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In addition, since each
(
c>1 x

ν
1 + c>2 x

ν
2 + . . .+ c>T x

ν
T

)
−
(
c>1 y

ν
1 + c>2 y

ν
2 + . . .+ c>T y

ν
T

)
is a sample from an i.i.d. random variable D say, the variance of the estimator π̂
is

σ(π̂)2 =
var(D)

Nδ2
,

which converges to zero as N →∞.
So there are two sources of error in the estimate of expected marginal water

value by simulation: the optimization error ε0−εδ
δ
converges to zero as the number

of iterations of DOASA (number of cuts) tends to ∞, and the sampling error
converges to zero as the number of simulations N tends to ∞. Care must
be taken in estimating marginal water values by simulation if DOASA has not
converged. Then the magnitude of ε0−εδ

δ
can be much larger than σ(π̂).

7.2 DIA inflows

When the inflows are known to have some stagewise dependent structure we
adjust them using DIA and assume that they are independent. The cutting planes
obtained under DIA are independent of previous weeks observations, when a truly
dependent model should make the policy adapt to inflow history. So we should
expect some error if estimating marginal water values from the cutting planes.
We could adopt the second approach and simulate the policy obtained under

DIA assuming independent inflows with DIA. The estimator π̂ described in the
previous section can then be applied under the same assumptions. We note that
this approach will give an estimate of the expected marginal water value under the
assumption of DIA inflows. This estimate is not the same as the value obtained
under a (true) stage-wise dependent model. However using DIA inflows makes the
approximations of future cost better than those computed with original inflows.
Thus the error ε0−εδ

δ
is likely to be smaller using DIA inflows.

7.3 Historical inflows

Finally, one can attempt to estimate marginal water values by simulating the
DOASA policy (obtained either with assumed independent historical inflows, or
with DIA inflows) with N historical inflow sequences. Typically N is no more
than 80. These inflow sequences can be thought of as independent samples from
the true inflow process. One problem with such an approach is that there are
relatively few historical sequences that can be used, and to reduce sampling error
we require

√
N to be large. Typically this means that the sampling error in the

estimated expected marginal water values are significant. One way of reducing
the sampling error is to build a Monte Carlo simulation model that accurately
represents the inflow process and then sample synthetic inflow sequences from
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such a high-fidelity inflow model. This model does not have to be convex to
enable cut calculation, but can be quite nonlinear, as long as it computationally
inexpensive enough to produce many synthetic sequences of inflows to reduce the
sampling error.
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